Hyper-heuristik untuk Penyelesaian Masalah Optimasi Lintas Domain dengan Seleksi Heuristik berdasarkan Variable Neighborhood Search
(1) Institut Teknologi Sepuluh Nopember
(2) Institut Teknologi Sepuluh Nopember
(3) Institut Teknologi Sepuluh Nopember
(*) Corresponding Author
DOI: https://doi.org/10.23917/khif.v5i1.7567
Abstract
Keywords
Full Text:
PDF (Bahasa Indonesia)References
R. Qu, “Meta-heurisitic Agorithm.” Apr-2016.
E. K. Burke, Search methodologies. New York: Springer, 2013.
G. Ochoa, “Search-based Approaches and Hyper-heuristics.”
E. K. Burke, M. Hyde, G. Kendall, G. Ochoa, E. Özcan, and J. R. Woodward, “A classification of hyper-heuristic approaches,” in Handbook of metaheuristics, Springer, 2010, pp. 449–468.
E. K. Burke et al., “Hyper-heuristics: a survey of the state of the art,” J. Oper. Res. Soc., vol. 64, no. 12, pp. 1695–1724, Dec. 2013.
S. S. Choong, L.-P. Wong, and C. P. Lim, “Automatic design of hyper-heuristic based on reinforcement learning,” Inf. Sci., vol. 436–437, pp. 89–107, Apr. 2018.
M. Misir, W. Vancroonenburg, K. Verbeeck, and G. V. Berghe, “A selection hyper-heuristic for scheduling deliveries of ready-mixed concrete,” p. 11, 2011.
W. G. Jackson, E. Ozcan, and J. H. Drake, “Late acceptance-based selection hyper-heuristics for cross-domain heuristic search,” 2013, pp. 228–235.
P. Hansen and N. Mladenović, “Variable neighborhood search: Principles and applications,” Eur. J. Oper. Res., vol. 130, no. 3, pp. 449–467, 2001.
Z. Xu and Y. Cai, “Variable neighborhood search for consistent vehicle routing problem,” Expert Syst. Appl., vol. 113, pp. 66–76, Dec. 2018.
Y. Qiu, L. Wang, X. Xu, X. Fang, and P. M. Pardalos, “A variable neighborhood search heuristic algorithm for production routing problems,” Appl. Soft Comput., vol. 66, pp. 311–318, May 2018.
T. Czachórski, E. Gelenbe, K. Grochla, and R. Lent, Eds., “Performance of Selection Hyper-heuristics on the Extended HyFlex Domains,” vol. 659, 2016.
G. Ochoa et al., “Hyflex: A benchmark framework for cross-domain heuristic search,” in European Conference on Evolutionary Computation in Combinatorial Optimization, 2012, pp. 136–147.
N. R. Sabar, M. Ayob, G. Kendall, and Rong Qu, “A Dynamic Multiarmed Bandit-Gene Expression Programming Hyper-Heuristic for Combinatorial Optimization Problems,” IEEE Trans. Cybern., vol. 45, no. 2, pp. 217–228, Feb. 2015.
Muklason, A., Parkes, A.J., Özcan, E., McCollum, B. and McMullan, P.,. Fairness in examination timetabling: Student preferences and extended formulations. Applied Soft Computing, 55, pp.302-318, 2017.
Muklason, A., Andrew J. Parkes, Ender Özcan, Simon N. Kingston, Barry McCollum and Paul McMullan, Hyper-heuristics for Solving a Multi-objective Examination Timetabling Problem, PATAT 2018: Proceedings of the 12th International Conference of the Practice and Theory of Automated Timetabling, 2018.
Article Metrics
Abstract view(s): 1109 time(s)PDF (Bahasa Indonesia): 589 time(s)
Refbacks
- There are currently no refbacks.