Analysis of Slow Moving Goods Classification Technique: Random Forest and Naïve Bayes
(1) Sekolah Tinggi Ilmu Komputer (STIKOM) Pelita Indonesia
(2) Sekolah Tinggi Ilmu Komputer (STIKOM) Pelita Indonesia
(3) AMIK Mahaputra Riau
(*) Corresponding Author
DOI: https://doi.org/10.23917/khif.v5i2.8263
Abstract
Keywords
Full Text:
PDFReferences
Rajahstan, Reading Material Drug Store Management Rational Drug Use For Medical Officers , Nurses & Pharmacists, no. December. 2010.
D. Janari, M. M. Rahman, and A. R. Anugerah, “Analisis Pengendalian Persediaan Menggunakan Pendekatan Music 3D (Muti Unit Spares Inventory Control- Three Dimensional Approach) Pada Warehouse Di PT Semen Indonesia (PERSERO) TBK Pabrik Tuban,” Teknoin, vol. 22, no. 4, pp. 261–268, 2016.
G. Chodak, “The Nuisance of Slow Moving Products in Electronic Commerce,” MPRA Munich Pers. RePEc Arch., vol. 70141, no. 3, pp. 1–7, 2016.
B. Lowe and A. Kulkarni, “Multispectral Image Analysis Using Random Forest,” Int. J. Soft Comput., vol. 6, no. 1, pp. 1–14, 2015.
V. Y. Kullarni and P. K. Sinha, “Random Forest Classifier: A Survey and Future Research Directions,” Int. J. Adv. Comput., vol. 36, no. 1, pp. 1144–1156, 2013.
N. Horning, “Random Forests: An algorithm for image classification and generation of continuous fields data sets,” in International Conference on Geoinformatics for Spatial Infrastructure Development in Earth and Allied Sciences 2010, 2010, pp. 1–6.
Susanto, E. D. S. Mulyani, and I. R. Nurhasanah, “Penerapan Data Mining Classification Untuk Prediksi Perilaku Pola Pembelian Terhadap Waktu Transaksi Menggunakan Metode Naïve Bayes,” in Konferensi Nasional Sistem dan Informatika (KNS&I), 2015, pp. 313–318.
Ardiyansyah, P. A. Rahayuningsih, and R. Maulana, “Analisis Perbandingan Algoritma Klasifikasi Data Mining Untuk Dataset Blogger Dengan Rapid Miner,” J. Khatulistiwa Inform., vol. VI, no. 1, pp. 20–28, 2018.
I. Oktanisa and A. A. Supianto, “Perbandingan Teknik Klasifikasi Dalam Data Mining Untuk Bank Direct Marketing,” J. Teknol. Inf. dan Ilmu Komput., vol. 5, no. 5, pp. 567–576, 2018.
N. H. Niloy and M. A. I. Navid, “Naïve Bayesian Classifier and Classification Trees for the Predictive Accuracy of Probability of Default Credit Card Clients,” Am. J. Data Min. Knowl. Discov., vol. 3, no. 1, pp. 1–12, 2018.
N. Sagala and H. Tampubolon, “Komparasi Kinerja Algoritma Data Mining pada Dataset Konsumsi Alkohol Siswa,” Khazanah Inform. J. Ilmu Komput. dan Inform., vol. 4, no. 2, pp. 98–103, 2018.
A. K. Mishra and B. K. Ratha, “Study of Random Tree and Random Forest Data Mining Algorithms for Microarray Data Analysis,” Int. J. Adv. Electr. Comput. Eng., vol. 3, no. 4, pp. 5–7, 2016.
A. Cutler, D. R. Cutler, and J. R. Stevens, “Ensemble Machine Learning,” in Random Forest, no. January, 2011, p. 21.
E. Goel and E. Abhilasha, “Random Forest: A Review,” Int. J. Adv. Res. Comput. Sci. Softw. Eng., vol. 7, no. 1, pp. 251–257, 2017.
S. Taheri and M. Mammadov, “Learning the naive bayes classifier with optimization models,” Int. J. Appl. Math. Comput. Sci., vol. 23, no. 4, pp. 787–795, 2013.
S. Dixit and S. Kr, “Collaborative Analysis of Customer Feedbacks using Rapid Miner,” Int. J. Comput. Appl., vol. 142, no. 2, pp. 29–36, 2016.
K. . Ghose, R. Pradhan, and S. S. Ghose, “Decision Tree Classification of Remotely Sensed Satellite Data using Spectral Separability Matrix,” Int. J. Adv. Comput. Sci. Appl., vol. 1, no. 5, pp. 93–101, 2010.
Article Metrics
Abstract view(s): 1995 time(s)PDF: 874 time(s)
Refbacks
- There are currently no refbacks.