Validation of Analytical Method LC MS/MS for Determination Isoniazid in Rats Serum
Andi Suhendi(1*), Abdul Rohman(2), Djoko Wahyono(3), Arief Nurrochmad(4), Tasya Faradillah Manggo(5)(1) Universitas Muhammadiyah Surakarta
(2) Pharmaceutical Chemistry Department, Faculty of Pharmacy, Universitas Gadjah Mada, Sekip, Sleman, Indonesia
(3) Pharmacology and Clinical Pharmacy Department, Faculty of Pharmacy, Universitas Gadjah Mada
(4) Pharmacology and Clinical Pharmacy Department, Faculty of Pharmacy, Universitas Gadjah Mada
(5) Pharmaceutical Chemistry Department, Faculty of Pharmacy, Universitas Muhammadiyah Surakarta
(*) Corresponding Author
Abstract
Keywords
Full Text:
PDFReferences
Alsultan, A., Peloquin, C.A., 2014. Therapeutic Drug Monitoring in the Treatment of Tuberculosis: An Update. Drugs 74, 839–854. https://doi.org/10.1007/s40265-014-0222-8
Babalik, A., Mannix, S., Francis, D., Menzies, D., 2011. Therapeutic Drug Monitoring in the Treatment of Active Tuberculosis. Can. Respir. J. 18, 225–229. https://doi.org/10.1155/2011/307150
Banerjee, S., Mazumdar, S., 2012. Electrospray ionization mass spectrometry: a technique to access the information beyond the molecular weight of the analyte. Int. J. Anal. Chem. 2012, 282574. https://doi.org/10.1155/2012/282574
Bhagat, R., Saudagar, R.B., 2019. A Review on Analytical method Development and Validation. J. Drug Deliv. Ther. 9, 1064–1067. https://doi.org/10.22270/jddt.v9i3-s.2957
Chegou, N.N., Hoek, K.G.P., Kriel, M., Warren, R.M., Victor, T.C., Walzl, G., 2011. Tuberculosis assays: past, present and future. Expert Rev. Anti Infect. Ther. 9, 457–469. https://doi.org/10.1586/eri.11.23
Daher, A., Pitta, L., Santos, T., Barreira, D., Pinto, D., 2015. Using a single tablet daily to treat latent tuberculosis infection in Brazil: Bioequivalence of two different isoniazid formulations (300 mg and 100 mg) demonstrated by a sensitive and rapid high-performance liquid chromatography-tandem mass spectrometry . Mem. Inst. Oswaldo Cruz 110, 543–550. https://doi.org/10.1590/0074-02760140458
EMA, 2022. ICH guideline M10 on bioanalytical method validation and study sample analysis.
FDA, 2018. Bioanalytical Method Validation Guidance for Industry.
Felipe, G., Regina, H., Salgado, N., Leandro, J., 2017. Isoniazid : A Review of Characteristics , Properties and Analytical Methods. Crit. Rev. Anal. Chem. 47, 298–308. https://doi.org/10.1080/10408347.2017.1281098
Hansen, F., Øiestad, E.L., Pedersen-Bjergaard, S., 2020. Bioanalysis of pharmaceuticals using liquid-phase microextraction combined with liquid chromatography–mass spectrometry. J. Pharm. Biomed. Anal. 189, 113446. https://doi.org/10.1016/j.jpba.2020.113446
Harmita, K., Harahap, Y., Supandi, 2019. Liquid Chromatography-Thandem Mass Spectrometry (LC-MS/MS). ISFI Penerbit, Jakarta.
Hee, K.H., Seo, J.J., Lee, L.S., 2015. Development and validation of liquid chromatography tandem mass spectrometry method for simultaneous quantification of first line tuberculosis drugs and metabolites in human plasma and its application in c. J. Pharm. Biomed. Anal. 102, 253–260. https://doi.org/10.1016/j.jpba.2014.09.019
Heysell, S.K., Moore, J.L., Keller, S.J., Houpt, E.R., 2010. Therapeutic Drug Monitoring for Slow Response to Tuberculosis Treatment in a State Control Program, Virginia, USA. Emerg. Infect. Dis. 16, 1546–1553. https://doi.org/10.3201/eid1610.100374
Jiang, Z., Huang, L., Zhang, L., Yu, Q., Lin, Y., Fei, H., Shen, H., Huang, H., 2022. A Simple and Sensitive UPLC–UV Method for Simultaneous Determination of Isoniazid, Pyrazinamide, and Rifampicin in Human Plasma and Its Application in Therapeutic Drug Monitoring. Front. Mol. Biosci. 9. https://doi.org/10.3389/fmolb.2022.873311
Kafeenah, H.I.S., Osman, R., Bakar, N.K.A., 2019. Effect of Mobile Phase pH on the Electrospray Ionization Efficiency and Qualitative Analysis of Pharmaceuticals in ESI + LC-MS/MS. J. Chromatogr. Sci. 57, 847–854. https://doi.org/10.1093/chromsci/bmz061
Kay, R., Barton, C., Ratcliffe, L., Matharoo-Ball, B., Brown, P., Roberts, J., Teale, P., Creaser, C., 2008. Enrichment of low molecular weight serum proteins using acetonitrile precipitation for mass spectrometry based proteomic analysis. Rapid Commun. Mass Spectrom. RCM 22, 3255–3260. https://doi.org/10.1002/rcm.3729
Kumar, L.M.S., Azeemuddin, M.M., Routhu, K.C., Priya, K., Babu, U.V., Pai, S.R., 2023. A validated LC-MS/MS method for simultaneous quantification of antitubercular drugs in rat plasma and its application for a pharmacokinetic interaction study with Immusante®. J. Appl. Pharm. Sci. 13, 151–158. https://doi.org/10.7324/JAPS.2023.118956
Lei, Q., Wang, Hao, Zhao, Y., Dang, L., Zhu, C., Lv, X., Wang, Hui, Zhou, J., 2019. Determinants of serum concentration of first-line anti-tuberculosis drugs from China. Medicine (Baltimore) 98, e17523. https://doi.org/10.1097/MD.0000000000017523
Liu, P., Fu, Z., Jiang, J., Yuan, L., Lin, Z., 2013. Determination of isoniazid concentration in rabbit vertebrae by isotope tracing technique in conjunction with HPLC. Biomed. Chromatogr. 27, 1150–1156. https://doi.org/10.1002/bmc.2920
Luyen, L.T., Hung, T.M., Huyen, L.T., Tuan, L.A., Huong, D.T.L., Duc, H.V., Tung, B.T., 2018. Simultaneous Determination of Pyrazinamide, Rifampicin, Ethambutol, Isoniazid and Acetyl Isoniazid in Human Plasma by LC-MS/MS Method. J. Appl. Pharm. Sci. 8, 061–073. https://doi.org/10.7324/JAPS.2018.8910
Pasipanodya, J.G., McIlleron, H., Burger, A., Wash, P.A., Smith, P., Gumbo, T., 2013. Serum Drug Concentrations Predictive of Pulmonary Tuberculosis Outcomes. J. Infect. Dis. 208, 1464–1473. https://doi.org/10.1093/infdis/jit352
Pitt, J.J., 2009. Principles and applications of liquid chromatography-mass spectrometry in clinical biochemistry. Clin. Biochem. Rev. 30, 19–34. https://pubmed.ncbi.nlm.nih.gov/19224008
Pouplin, T., Bang, N.D., Toi, P.V., Phuong, P.N., Dung, N.H., Duong, T.N., Caws, M., Thwaites, G.E., Tarning, J., Day, J.N., 2016. Naïve-pooled pharmacokinetic analysis of pyrazinamide, isoniazid and rifampicin in plasma and cerebrospinal fluid of Vietnamese children with tuberculous meningitis. BMC Infect. Dis. 16, 144. https://doi.org/10.1186/s12879-016-1470-x
Prahl, J.B., Johansen, I.S., Cohen, A.S., Frimodt-Møller, N., Andersen, Å.B., 2014. Clinical significance of 2 h plasma concentrations of first-line anti-tuberculosis drugs: a prospective observational study. J. Antimicrob. Chemother. 69, 2841–2847. https://doi.org/10.1093/jac/dku210
Pratima, N.A., Gadikar, R., 2018. Liquid Chromatography-Mass Spectrometry and Its Applications: A Brief Review. Arch. Org. Inorg. Chem. Sci. 1, 001–009. http://dx.doi.org/10.32474/AOICS.2018.01.000103
Vyas, A.K.J., Mishra, S.B., Patel, A.B., Patel, N.K., Shah, S.R., Sheth, D.B., 2022. A Brief Review on Liquid Chromatography- Mass Spectrometry/LCMS and its Application. Asian J. Pharm. Anal. 12, 203–210. https://doi.org/10.52711/2231-5675.2022.00034
WHO, World Health Organization., 2023. Global Tuberculosis Report 2023. WHO.
Xing, Y., Yin, L., Le, X., Chen, J., Zhang, Lin, Li, Y., Lu, H., Zhang, Lijun, 2021. Simultaneous determination of first-line anti-tuberculosis drugs and one metabolite of isoniazid by liquid chromatography/tandem mass spectrometry in patients with human immunodeficiency virus-tuberculosis coinfection. Heliyon 7, 1–11. https://doi.org/10.1016/j.heliyon.2021.e07532
Zheng, Y., Xu, N., Hu, X., Zhang, Q., Liu, Y., Zhao, Q., 2020. Development and Application of a LC-MS/MS Method for Simultaneous Quantification of Four First-Line Antituberculosis Drugs in Human Serum. J. Anal. Methods Chem. 2020, 1–10. https://doi.org/10.1155/2020/8838219
Article Metrics
Abstract view(s): 531 time(s)PDF: 1316 time(s)
Refbacks
- There are currently no refbacks.