Implementasi Gerakan Tangan terhadap Navigasi Robot Beroda menggunakan Teknik Accelerometer

Bagus Prasetyo(1), Kemahyanto Exaudi(2*), Sarmayanta Sembiring(3)

(1) Politeknik Negeri Ujung Pandang
(2) Universitas Sriwijaya
(3) Universitas Sriwijaya
(*) Corresponding Author

Abstract

Human-machine interface (HMI) is a system that can connect human organs to the control of a machine using computer technology. Today's robot technology has been widely researched, especially in terms of robot motion control. This research adopts the accelerometer technique by utilizing the wrist to control the motion of a wheeled robot via wireless communication. A wheeled robot as a data receiver and hand movements as a data transmitter. The MPU6050 sensor is mounted on the back of the hand to read hand movements based on the Pitch (y-axis) and Roll (x-axis) values. Communication between robots and hand movements using Bluetooth. The results prove that the accelerometer sensor on the MPU 6050 has successfully identified wrist motion as a remote navigation robot. Pitch value is greater than 160, so the robot moves backward and for moving forward is less than 140. Meanwhile, for moving left, the Roll value is less than 40 and for moving right is greater than 60.

Keywords

Accelerometer, Bluetooth, HMI, Robot.

Full Text:

PDF

References

B. Schmitt, “Speciesism: an obstacle to AI and robot adoption,” Mark. Lett., vol. 31, no. 1, pp. 3–6, 2020.

D. Westerman, A. P. Edwards, C. Edwards, Z. Luo, and P. R. Spence, “I-It, I-Thou, I-Robot: The Perceived Humanness of AI in Human-Machine Communication,” Commun. Stud., vol. 71, no. 3, pp. 393–408, 2020.

A. R. Chaidir, G. A. Rahardi, K. Anam, G. A. Rahardi, and K. Anam, “Navigasi robot bergerak berdasarkan landmark garis menggunakan kontroler Braitenberg dan pengolahan citra Mobile robot navigation based on line landmarks using the Braitenberg controller,” vol. 8, no. July, pp. 185–191, 2020.

R. Toyib and C. Saputra, “PROTOTYPE ROBOT LENGAN DENGAN KONTROL JARAK JAUH MENGGUNAKAN BLUETOOTH HC-05 DAN KAMERA,” vol. VIII, pp. 11–20, 2021.

A. Editor and A. Cangelosi, “ScienceDirect Neuroevolution-based autonomous robot navigation : A comparative study,” Cogn. Syst. Res., vol. 62, pp. 35–43, 2020.

S. Hsia, S. Wang, and B. Wang, “Intelligent Surrounding Recognition for Robot Direction Control,” pp. 200275–200282, 2020.

J. Wu, K. Li, X. Zhao, and M. Tan, “Unfamiliar Dynamic Hand Gestures Recognition Based on Zero-Shot Learning Unfamiliar Dynamic Hand Gestures Recognition Based on Zero-Shot Learning,” no. November, 2018.

dan K. E. Rendyansyah, Aditya P. P. Prasetyo, “Implementasi Fuzzy Logic dan Trajectory pada Manipulator Mobile Robot Untuk Deteksi Kebocoran Gas,” J. Rekayasa Elektr., vol. 15, no. 36, pp. 18–24, 2019.

M. Farhan Razy, S. S. Anis, M. Touhiduzzaman Touhid, and J. Uddin, “An Automated Wheelchair for Physically Challenged People Using Hand Gesture and Mobile App,” in Intelligent Human Computer Interaction, 2021, pp. 135–144.

Q. Gong, G. Li, P. Sun, and Y. Pang, “Design and Implementation of Pulse Signal Detection System Based on Bluetooth Transmission,” vol. 8, no. 7, pp. 141–148, 2015.

E. W. Contributors, “Inertial Measurement Unit (IMU) Use,” ESE205 Wiki, 2018. [Online]. Available: https://classes.engineering.wustl.edu/ese205/core/index.php?title=Inertial_Measurement_Unit_(IMU)_Use&oldid=12354. [Accessed: 07-Apr-2021].

Dedi, “schematic motor DC circuit,” Thingkercad, 2021. [Online]. Available: https://www.tinkercad.com/things/8c5zaXjsFAJ-schematic-motor-dc-circuit. [Accessed: 18-Apr-2021].

Article Metrics

Abstract view(s): 460 time(s)
PDF: 422 time(s)

Refbacks

  • There are currently no refbacks.