Mikroalga Chlorella sp. Sebagai Bioremediator Logam Berat

Caroline Novela Dyah Irianto(1), L. Indah Murwani Yulianti(2*), B. Boy Rahardjo Sidharta(3)

(1) Fakultas Teknobiologi, Universitas Atma Jaya Yogyakarta
(2) 
(3) 
(*) Corresponding Author

Abstract

Polusi logam berat dan implikasinya bagi kesehatan manusia dan lingkungan telah menyebabkan meningkatnya minat untuk mengembangkan pendekatan bioteknologi lingkungan. Lima logam berat, antara lain arsenik (As), timbal (Pb), merkuri (Hg), cadmium (Cd), dan kromium (Cr) bersifat karsinogenik serta menunjukkan toksisitas walaupun dalam jumlah yang sedikit yang dapat mengancam ekologi lingkungan dan kesehatan manusia. Mikroalga memiliki beberapa manfaat dalam bidang industri terutama dalam menurunkan biaya produksi biofuel. Penggunaan mikroalga dalam fikoremediasi logam berat dikarenakan beberapa manfaat termasuk ketersediannya yang melimpah, murah, serta ramah lingkungan. Toleransi dan respons dari strain mikroalga yang berbeda terhadap logam berat serta kemampuan bioakumulasinya yang sangat efisien menjadi prioritas dalam pemanfaatan mikroalga. Chlorella sp. adalah spesies teratas yang banyak dipelajari dan digunakan dalam aplikasi penurunan logam berat dalam berbagai jenis limbah. Tinjauan ini bertujuan untuk mengetahui potensi mikroalga dalam menurunkan konsentrasi logam berat serta memberi informasi ilmiah yang bermanfaat untuk membantu pengembangan teknologi yang efisien di masa depan yang layak secara komersial dalam bioremediasi logam berat menggunakan mikroalga

Keywords

bioremediasi, mikroalgae, logam berat ,Chlorella, limbah cair

References

Daftar Pustaka

Ahmad, A., Bhat, A. H. dan Buang, A. 2017. Biosorption of transition metals by freely suspended and Ca-alginate immobilized with Chlorella vulgaris: kinetic and equilibrium modeling. Journal of Cleaner Production 171 : 1361 – 1375. DOI: 10.1016/j.jclepro .2017.09.252.

Alam, A. dan Wang, Z. 2019. Microalgae Biotechnology for Development of Biofuel and Wastewater Treatment. Springer, Singapore.

Alam, A., Wan, C., Zhao, X. Q., Chen, L. J., Chang, J. S., dan Bai, F. W. 2015. Enchanced removal of Zn2+ dan Cd2+ by the flocculating Chlorella vulgaris JSC-7. Journal of Hazardous Materials 289 : 38 – 45. DOI: 10.1016/j.jhazmat.2015 .02.012.

Budi, M. R. S., Rahardja, B. S. dan Masithah, E. D. 2018. Potensi penurunan konsentrasi logam berat tembaga (Cu) dan pertumbuhan mikroalga Spirulina platensis pada media kultur. Jurnal Akuakultur Rawa Indonesia 6 (1) : 83 – 93. DOI: 10.36706/jari.v6i1.7152.

Citra, L. dan Ahdiat, A. 2020. BNPB: Air Sumber PDAM di Kota Besar Tercemar Bakteri dan Logam Berat. Jakarta, Indonesia. https://kbr.id/nasional/022020/ bnpb__air_sumber pdam_di_kota_besar_tercemar_bakteri_dan_logam_berat/102358.html. Diakses pada tanggal 23 Juli 2020, pukul 09.09 WIB.

Derco, J. dan Vrana, B. 2018. Biosorption. IntechOpen, United Kingdom. Hal. 1 - 21.

Do, D. D. 1998. Adsorption Analysis : Equilibria and Kinetics. Imperial College Press, United Kingdom.

Jankowska, E., Sahu, A.K., Oleskowicz-Popiel, P., 2017. Biogas from microalgae: review on microalgae’s cultivation, harvesting and pretreatment for anaerobic digestion. Renew. Sustain. Energy Rev. 75 : 692–709. DOI: 10.1016/j.rser.2016.11.045.

Jesus, G. C. D., Bastos, R. G. dan Silva, M. A. D. 2019. Production and characterization of alginate beads for growth of immobilized Desmodesmus subspicatus and its potential to remove potassium, carbon and nitrogen from sugarcane vinasse. Biocatalysis and Agricultural Biotechnology 22 : 101 – 438. DOI: 10.1016/j.bcab.2019.101438.

Kumar, M., Singh, A. K. dan Sikandar, M. 2020. Biosorption of Hg (II) from aqueous solution using algal biomass: kinetics and isotherm studies. Heliyon 6 (1) : 1 – 10. DOI: 10.1016/j.heliyon.2020.e03321.

Lalhmunsiama., Gupta, P. L., Jung, H., Tiwari, D., Kong, S. H., dan Lee, S. K. 2016. Insight into the mechanism of Cd(II) and Pb(II) removal by sustainable magnetic biosorbent precursor to Chlorella vulgaris. Journal of the Taiwan Institute of Chemical Engineers 71 : 1 – 8. DOI:10.1016/j.jtice.2016.12.007.

Li, H., Zhang, Y., Liu, J., Shen, Z., Li, A., Ma., T., Feng, Q., dan Sun, Y. 2019. Treatment of high-nitrate wastewater mixtures from MnO2 industry by Chlorella vulgaris. Bioresource Technology 291 : 121 – 836. DOI:10.1016/j.biortech.2019 .121836.

Li, Y., Song, S., Xia, L., Yin, H., Meza, J. V. G., dan Ju, W. 2018. Enhanced Pb(II) removal by algalbased biosorbent cultivated in high-phosphorus cultures. Chemical Engineering Journal 361 : 167 – 179. DOI: 10.1016/j.cej.2018.12.070.

Moreira, V. R., Lebron, Y. A. R., Freire, S. J., Santos, L. V. S., Palladino, F., dan Jacob, R. S. 2019. Biosorption of copper ions from aqueous solution using Chlorella pyrenoidosa: Optimization, equilibrium and kinetics studies. Microchemical Journal 145 : 119 – 129. DOI: 10.1016/j.microc.2018.10.027.

Peraturan Pemerintah Republik Indonesia. 1999. Pengelolaan Limbah Bahan Berbahaya dan Beracun. Peraturan Pemerintah, Jakarta. Hal. 1 – 38.

Petrovic, A. dan Simonic, M. 2016. Removal of heavy metal ions from drinking water by alginate-immobilized Chlorella sorokiniana. International Journal Environment Science Technology 13 : 1761 – 1780. DOI; 10.1007/s13762-016-1015-2.

Podder, M. S. dan Majumder, C. B. 2015. Phycoremediation of arsenic from wastewaters by Chlorella pyrenoidosa. Groundwater for Sustainabel Development 1 : 78 – 91. DOI: 10.1016/j.gsd.2015.12.003.

Pratiwi, R. dan Prinajati, D. P. S. 2018. Adsorption of lead removal by chitosan from shrimp shells. Indonesian Journal of Urban Environmental Technology 2 (1) : 35 – 46. DOI: 10.25105/urbanenvirotech.v2i1.3554.

Purchase, D. 2016. Fungal Biology : Fungal Applications in Sustainable Environment Biotechnology. Springer, London. Hal. 146 - 147.

Qin, Y. 2018. Bioactive Seaweeds For Good Applications: Natural Ingredients for Healthy Diets. Academic Press, United States. Hal. 259 - 261.

Raheem, A., Wan Azlina, W.A.K.G., Taufiq Yap, Y.H., Danquah, M.K., dan Harun, R. 2015. Optimization of the microalgae Chlorella vulgaris for syngas production using central composite design. RSC Adv. 5 DOI:10.1039/c5ra10503j.

Romero, D., Brcla, E., Dolores, E. M., dan Munoz, P. 2020. European eels and heavy metals from the Mar Menor Lagoon (SE Spain). Marine Pollution Bulletin 158 : 1 – 9. DOI: 10.1016/j.marpolbul.2020.111368.

Rugnini, L., Gosta, G., Congestri, R., dan Bruno, L. 2017. Testing of two different strains of green microalgae for Cu and Ni removal from aqueous media. Science of the Total Environment 601 – 602 : 059 – 967. DOI:10.1016/j.scitotenv .2017.05.222.

Saavedra, R., Munoz, R., Taboada, M. E., dan Balado, S. 2019. Influence of organic matter and CO2 supply on bioremediation of heavy metals by Chlorella vulgaris and Scenedesmus almeriensis in a multimetallic matrix. Ecotoxicology and Environmental Safety 182 : 109 – 393. DOI: 10.1016/j.ecoenv.2019.109393.

Saavedra, R., Munoz, R., Taboada, M. E., Vega, M., dan Balado, S. 2018. Comparative uptake study of arsenic, boron, copper, manganese and zinc from water by different green microalgae. Bioresource Technology 263 : 49 – 57. DOI: 10.1016/j.biortech .2018.04.101.

Saleh, H. E. D. M. dan Aglan, R. F. 2018. Hevy Metals. IntechOpen, United Kingdom. Hal. 1 - 13.

Sayadi, M. H., Raskhi, O. dan Shahri, E. 2019. Application of modified Spirulina platensis and Chlorella vulgaris powder on the adsorption of heavy metals from aqueous solutions. Journal of Environmental Chemical Engineering 7 : 1 – 9. DOI: 10.1016/j.jece.2019-.103169.

Sheekh, M. E., Sabagh, S. E., Souod, G. A. E., dan Elbeltagy, A. 2019. Biosorption of cadmium from aqueous solution by free and immobilized dry biomass of Chlorella vulgaris. International Journal of Environmental Research 13 (5) : 511 – 521. DOI: 10.1007/s41742-019-00190-z.

Subandriyo, J. 2017. Pencemaran Logam Berat Kian Parah. Jakarta, Indonesia. http://pusriskel.litbang.kkp.go.id/index.php/home/1606-pencemaran-logam-berat-kian-parah. Diakses pada tanggal 23 Juli 2020, pukul 09.22 WIB.

Sun, R., Yang, J., Xia, P., Wu, S., Lin, T., dan Yi, Y. 2020. Contamination features and ecological risks of heavy metals in farmland along shoreline of Caohai plateau wetland, China. Chemosphere 254 : 1 – 9. DOI: 10.1016/j.chemosphere.2020.126828.

Tchounwou, P. B., Yedjou, C. G., Patlolla, A. K., dan Sutton, D. J. 2012. Heavy Metals Toxicity and Environment. Jackson State University, USA. Hal 2-3, 13.

Urrutia, C., Mansilla, E. Y. dan Jeison, D. 2019. Bioremoval of heavy metals from metal mine tailings water using microalgae biomass. Algal Research 43 : 1 – 9. DOI: 10.1016/j.algal.2019.101659.

Valdez, C., Perenguez, Y. dan Matyaz, B. 2018. Analysis of removal of cadmium by action immobilized Chlorella sp. micro-algae in alginate beads. F1000Research 7 (54) : 1 – 8. DOI: 10.12688/f1000research.13527.1.

Vasilieva, S. G., Lobakova, E. S, Lukyanov, A. A., dan Solovchenko, A. E. 2016. Immobilized microalgae in biotechnology. Moscow University Biological Science Bulletin 71 (3) : 170 - 176. DOI: 10.3103/s0096392516030135.

Vidyalaxmi., Kaushik, G. dan Raza, K. 2019. Potential of novel Dunaliella salina from sambhar salt lake, India, for bioremediation of hexavalent chromium from aqueous effluents: An optimized green approach. Ecotoxicology and Environmental Safety 180 : 430 – 438. DOI: 10.1016/j.ecoenv.2019.05.039.

Yaghmaeian, K. dan Jaafari, J. 2018. Optimization of heavy metal biosorption onto freshwater algae (Chlorella coloniales) algae cells using response surface methodology (RSM). Chemosphere 217 : 447 – 455. DOI: 10.1016/j.chemosphere.2018.10.205.

Zeraatkar, A. K., Ahmadzadeh, H. dan Talebi, A. F. 2016. Potential use of algae for heavy metal bioremediation, a critical review. Journal of Environmental Management 181 : 917 – 831 DOI: 10.1016/j.jenvman.2016.06.059.

Zhang, J., Zhou, F., Liu, Y., Huang, F., dan Zhang, C. 2019. Effect of extracellular polymeric substances on arsenic accumulation in Chlorella pyrenoidosa. Science of The Total Environment 13 : 53 - 68. DOI:10.1016/j.scitotenv.2019.135368.

Article Metrics

Abstract view(s): 1534 time(s)
PDF (Bahasa Indonesia): 761 time(s)