Spatial Analysis to Mitigate the Spread of Covid-19 Based on Regional Demographic Characteristics

Mochamad Firman Ghazali, Anggun Tridawati, Mamad Sugandi, Aqilla Fitdhea Anesta, Ketut Wikantika

DOI: https://doi.org/10.23917/forgeo.v35i1.12325

Abstract

COVID-19 is currently the hot topic of discussion by scientists because of its ability to quickly spread, in line with everyday human activities. One of the environmental factors related to climatic parameters, such as the air temperature, contributed to the spreading of COVID-19 in the last four months. Its distribution ability is no longer local as it successfully halts the important activities in many countries globally. This study aims to explain the opportunity of geospatial analysis in handling the COVID-19 distribution locally based on the characteristics of demographic data. Various data, including the confirmed positive for COVID-19, age-based population, and Landsat 8 satellite imagery data were used to determine the spatial characteristics of the COVID-19 distribution per September 2020 in Bandung, Indonesia. An inverse distance weighted (IDW), Moran's I index and local indicator spatial association (LISA), and a proposed ratio of the elderly population against the population with confirmed positive for COVID-19 (CoVE) were used as the approach to determine its distribution characteristics. The information derived from Landsat 8 satellite imagery, such as the residential area, surface temperature, and humidity based on the supervised classification, land surface temperature (LST), and the normalized difference water index (NDWI) was used to perform the analysis.  The results showed that the positive population of COVID-19 was concentrated in Bandung city. However, with a Moran's I value of 0.316, not all are grouped into the same category. There are only 8, 2, 5, and 3 districts categorized as HH, HL, LL, and LH. However, the areas with a large or small number of elderlies do not always correlate with the high number of confirmed positives for COVID-19. There are only 3, 1, and 3 districts classified as HH, HL, and LL. They were represented by the values of Moran's I, for about 0.057. The positive relationship between confirmed positive for COVID-19 and the built-up area, surface temperature, humidity, and the elderly population based on the coefficient of determination (R2) were 0.03, 0.28, 0.25, and 0.019, respectively. The study also shows that the vulnerability of those areas is relatively low. The study shows that the vulnerabilities in these areas are relatively low and the recommendation for COVID-19 widespread mitigation has to consider the demographic characteristics precisely in the large scale social restrictions (LSSR).

Keywords

COVID-19, inverse distance weighted, old people population, spatial distribution, mitigation, PSBB

Full Text:

HTML PDF

References

Ahmadi, M., Sharifi, A., Dorosti, S., Jafarzadeh Ghoushchi, S., & Ghanbari, N. (2020). Investigation of effective climatology parameters on COVID-19 outbreak in Iran. Science of the Total Environment, 729. https://doi.org/10.1016/j.scitotenv.2020.138705

Alexander, K. A., Sanderson, C. E., Marathe, M., Lewis, B. L., Rivers, M., Shaman, J., Drake, J. M., Lofgren, E., Dato, V. M., Eisenberg, C., & Eubank, S. (2015). What Factors Might Have Led to the Emergence of Ebola in West Africa ? PLOS Neglected Tropical Diseases, 1–26. https://doi.org/10.1371/journal.pntd.0003652

Anselin, L. (1995). Local Indicators of Spatial Association-LISA. Geographical Analysis Sumption, 27(2), 93–115. https://doi.org/10.1111/j.1538-4632.1995.tb00338.x

Anuraga, G., & Sulistiyawan, E. (2017). Autokorelasi Spasial untuk Pemetaan Karakteristik Indeks Pembangunan Kesehatan Masyarakat (IPKM) Pada Kabupaten/Kota di Jawa Timur. Statistika, 5(2), 32–41.

ArcGIS. (2020). How Cluster and Outlier Analysis (Anselin Local Moran’s I) works. ArcGIS Pro Documentation. https://pro.arcgis.com/en/pro-app/tool-reference/spatial-statistics/h-how-cluster-and-outlier-analysis-anselin-local-m.htm

Bariotakis, M., Sourvinos, G., Castanas, E., & Pirintsos, S. (2020). Climatic influences on the worldwide spread of SARS-CoV-2. MedRXiv, 1, 0–2. https://doi.org/10.1101/2020.03.19.20038158

Bekti, R. D. (2012). Pola Hubungan Kemiskinan Di Jawa Timur. ComTech, 3(1), 217–227.

Bherwani, H., Gupta, A., Anjum, S., Anshul, A., & Kumar, R. (2020). Exploring dependence of COVID-19 on environmental factors and spread prediction in India. Npj Climate and Atmospheric Science, 38, 1–13. https://doi.org/10.1038/s41612-020-00142-x

BPS Kabupaten Bandung. (2019). Kabupaten Bandung dalam angka 2019. BPS Kabupaten Bandung.

BPS Kabupaten Bandung. (2020). Kabupaten Bandung Dalam Angka 2020. In Penduduk dan Ketenagakerjaan (Vol. 2, Issue 1). BPS Kabupaten Bandung.

BPS Kota Bandung. (2020). Kota Bandung Dalam Angka 2020. BPS Kota Bandung.

Cartalis, C. (2019). Advanced Thermal Remote Sensing. 2019 Advanced International Training Course in Land Remote Sensing, 80.

Chavez, P. S. (1988). An improved dark-object subtraction technique for atmospheric scattering correction of multispectral data. Remote Sensing of Environment, 24(3), 459–479. https://doi.org/10.1016/0034-4257(88)90019-3

Coccia, M. (2020). Factors determining the diffusion of COVID-19 and suggested strategy to prevent future accelerated viral infectivity similar to COVID. Science of the Total Environment, 729, 138474. https://doi.org/10.1016/j.scitotenv.2020.138474

Dark, S. J., & Bram, D. (2007). The modifiable areal unit problem (MAUP) in physical geography. Progress in Physical Geography, 31(5), 471–479. https://doi.org/10.1177/0309133307083294

Dennis, R. A., Mayer, J., Applegate, G., Chokkalingam, U., Colfer, C. J. P., Kurniawan, I., Lachowski, H., Maus, P., Permana, R. P., Ruchiat, Y., Stolle, F., Suyanto, & Tomich, T. P. (2005). Fire, people and pixels: Linking social science and remote sensing to understand underlying causes and impacts of fires in Indonesia. Human Ecology, 33(4), 465–504. https://doi.org/10.1007/s10745-005-5156-z

DHS Spatial Interpolation Working Group. (2014). Spatial Interpolation with Demographic and Health Survey Data : Key considerations (Issue September).

Dipa, A. (2020). COVID-19: Greater Bandung to impose large-scale social restrictions on Wednesday. The Jakarta Post. https://www.thejakartapost.com/news/2020/04/18/covid-19-greater-bandung-to-impose-large-scale-social-restrictions-on-wednesday.html

Eslami, H., & Jalili, M. (2020). The role of environmental factors to transmission of SARS ‑ CoV ‑ 2 ( COVID ‑ 19 ). AMB Express, 10(92), 8. https://doi.org/10.1186/s13568-020-01028-0

Fachriansyah, R. (2020). What you need to know about large-scale social restrictions in Jakarta. The Jakarta Post. https://www.thejakartapost.com/news/2020/04/08/jakarta-will-impose-stronger-mobility-restrictions-on-friday-heres-what-you-need-to-know.html

Franch-Pardo, I., Napoletano, B. M., Rosete-Verges, F., & Billa, L. (2020). Spatial analysis and GIS in the study of COVID-19. A review. Science of the Total Environment, 739, 140033. https://doi.org/10.1016/j.scitotenv.2020.140033

Gayle, H. D., & Hill, G. L. (2001). Global Impact of Human Immunodeficiency Virus and AIDS. Clinical Microbiology Reviews, 14(2), 327–335. https://doi.org/10.1128/CMR.14.2.327

Geoda. (2020). Local Spatial Autocorrelation. An Introduction to Spatial Data Analysis. https://geodacenter.github.io/workbook/6a_local_auto/lab6a.html

Goeijenbier, M., van Kampen, J. J. A., Reusken, C. B. E. M., Koopmans, M. P. G., & van Gorp, E. C. M. (2014). Ebola virus disease: A review on epidemiology, symptoms, treatment and pathogenesis. Netherlands Journal of Medicine, 72(9), 442–448.

Handriansyah, H. (2020). PSBB di 5 Kecamatan Kabupaten Bandung Diperpanjang, Belajar dari Rumah Dilanjutkan hingga 13 Juli. Pikiran-Rakyat.Com. https://www.pikiran-rakyat.com/bandung-raya/pr-01390964/psbb-di-5-kecamatan-kabupaten-bandung-diperpanjang-belajar-dari-rumah-dilanjutkan-hingga-13-juli

Huo, X., Li, H., Sun, D., Zhou, L., & Li, B. (2012). Combining Geostatistics with Moran ’ s I Analysis for Mapping Soil Heavy Metals in Beijing , China. International Journal Research of Public Health, 9, 995–1017. https://doi.org/10.3390/ijerph9030995

Jackson, M. C., Huang, L., Xie, Q., & Tiwari, R. C. (2010). A modified version of Moran ’ s I. International Journal of Health Geographic, 9(33), 1–10.

Jutla, A., Whitcombe, E., Hasan, N., Haley, B., Akanda, A., Huq, A., Alam, M., Sack, R. B., & Colwell, R. (2013). Environmental Factors Influencing Epidemic Cholera. The American Society of Tropical Medicine and Hygiene, 89(3), 597–607. https://doi.org/10.4269/ajtmh.12-0721

Kaner, J., & Schaack, S. (2016). Understanding Ebola: The 2014 epidemic. In Globalization and Health (Vol. 12, Issue 1). BioMed Central Ltd. https://doi.org/10.1186/s12992-016-0194-4

Kang, D., Choi, H., Kim, J. H., & Choi, J. (2020). Spatial epidemic dynamics of the COVID-19 outbreak in China. International Journal of Infectious Diseases, 94, 96–102. https://doi.org/10.1016/j.ijid.2020.03.076

Lewis, T. (2020). How Coronavirus Spreads through the Air: What We Know So Far. Scientificamerican. https://www.scientificamerican.com/article/how-coronavirus-spreads-through-the-air-what-we-know-so-far1/

Lin, C., Wu, C.-C., Tsogt, K., Ouyang, Y.-C., & Chang, C.-I. (2015). Effects of atmospheric correction and pansharpening on LULC classification accuracy using WorldView-2 imagery. Information Processing in Agriculture, 2(1), 25–36. https://doi.org/10.1016/j.inpa.2015.01.003

Luo, W., Majumder, M., Liu, D., Poirier, C., Mandl, K., Lipsitch, M., & Santillana, M. (2020). The role of absolute humidity on transmission rates of the COVID-19 outbreak. MedRXiv, 8. https://doi.org/10.1101/2020.02.12.20022467

Martellucci, C. A., Sah, R., Rabaan, A. A., Dhama, K., Casalone, C., Arteaga-Livias, K., Sawano, T., Ozaki, A., Bhandari, D., Higuchi, A., Kotera, Y., Fathah, Z., Roy, N., Ur Rahman, M. A., Tanimoto, T., & Rodriguez-Morales, A. J. (2020). Changes in the spatial distribution of COVID-19 incidence in Italy using GIS-based maps. Annals of Clinical Microbiology and Antimicrobials, 19(1), 11. https://doi.org/10.1186/s12941-020-00373-z

Mauludin, L. A. (2020). Pemkab Bandung Masih Mengkaji Opsi PSBB di Kabupaten Bandung. Tribun Jabar.Com. https://jabar.tribunnews.com/2020/04/12/pemkab-bandung-masih-mengkaji-opsi-psbb-di-kabupaten-bandung

McFeeters, S. K. (2013). Using the normalized difference water index (ndwi) within a geographic information system to detect swimming pools for mosquito abatement: A practical approach. Remote Sensing, 5(7), 3544–3561. https://doi.org/10.3390/rs5073544

Meng, G., Law, J., & Thompson, M. E. (2010). Small-scale health-related indicator acquisition using secondary data spatial interpolation. International Journal of Health Geographics, 9, 1–17. https://doi.org/10.1186/1476-072X-9-50

Moran, P. A. P. (1950). Notes on Continuous Stochastic Phenomena. Biometrika Trust, 37(1), 17–23.

Portnov, B. A., Dubnov, J., & Barchana, M. (2007). On ecological fallacy, assessment errors stemming from misguided variable selection, and the effect of aggregation on the outcome of epidemiological study. Journal of Exposure Science and Environmental Epidemiology, 17(1), 106–121. https://doi.org/10.1038/sj.jes.7500533

Pusat Informasi dan Koordinasi COVID-19 Jawa Barat. (2020). Peta Kasus Covid-19. Pemerintah Provinsi Jawa Barat. https://pikobar.jabarprov.go.id/

Qi, H., Xiao, S., Shi, R., Ward, M. P., Chen, Y., Tu, W., Su, Q., Wang, W., Wang, X., & Zhang, Z. (2020). COVID-19 transmission in Mainland China is associated with temperature and humidity: A time-series analysis. Science of the Total Environment, 728, 6. https://doi.org/10.1016/j.scitotenv.2020.138778

Richards, J. A. (2013). Supervised Classification Techniques. In Remote Sensing Digital Image Analysis: An Introduction (pp. 247–494). Springer-Verlag Berlin Heidelber. https://doi.org/10.1007/978-3-642-30062-2

Rizaldi, B. A. (2020). Kota Bandung perpanjang PSBB hingga akhir Mei 2020. Antara News.Com. https://www.antaranews.com/berita/1500892/kota-bandung-perpanjang-psbb-hingga-akhir-mei-2020

Roy, S., Bhunia, G. S., & Shit, P. K. (2020). Spatial prediction of COVID-19 epidemic using ARIMA techniques in India. Modeling Earth Systems and Environment, 2019(0123456789). https://doi.org/10.1007/s40808-020-00890-y

Saadat, S., Rawtani, D., & Mustansar, C. (2020). Science of the Total Environment Environmental perspective of COVID-19. Science of the Total Environment, 728, 138870. https://doi.org/10.1016/j.scitotenv.2020.138870

Santoso, E., Ismail, M., Noor, I., & Ekawaty, M. (2019). Geographical Pattern of Economic Activities : an Evidence from Large and Medium Manufacturing Industries in Indonesia. The 4rd International Conference in Planning in the 2019 Era of Uncertainty, 8. https://doi.org/10.1088/1755-1315/328/1/012038

Seltenrich, N. (2014). Remote-sensing applications for environmental health research. Environmental Health Perspectives, 122(10), A268–A275. https://doi.org/10.1289/ehp.122-A268

Seyedmohammadi, J., Esmaeelnejad, L., & Shabanpour, M. (2016). Spatial variation modeling of groundwater electrical conductivity using geostatistics and GIS. Modeling Earth Systems and Environment, 2(4), 1–10. https://doi.org/10.1007/s40808-016-0226-3

Shah, D., Pandya, M., Trivedi, H. J., & Jan, A. R. (2013). Estimating minimum and maximum air temperature using MODIS data over Indo-Gangetic Plain. Journal of Earth System Science, 122(6), 1593–1605. https://doi.org/10.1007/s12040-013-0369-9

Shariati, M., Mesgari, T., Kasraee, M., & Jahangiri-rad, M. (2020). Spatiotemporal analysis and hotspots detection of COVID-19 using geographic information system (March and April, 2020). Journal of Environmental Health Science and Engineering, 9. https://doi.org/10.1007/s40201-020-00565-x

Sobrino, J. A., Jiménez-Muñoz, J. C., & Paolini, L. (2004). Land surface temperature retrieval from LANDSAT TM 5. Remote Sensing of Environment, 90(4), 434–440. https://doi.org/10.1016/j.rse.2004.02.003

Tobler, W. R. (1970). A Computer Movie Simulating Urban Growth in the Detroit Region. Economic Geography, 46, 234–240.

Tosepu, R., Gunawan, J., Effendy, D. S., Ahmad, L. O. A. I., Lestari, H., Bahar, H., & Asfian, P. (2020). Correlation between weather and Covid-19 pandemic in Jakarta, Indonesia. Science of the Total Environment, 725, 4. https://doi.org/10.1016/j.scitotenv.2020.138436

U. S. Geological Survey. (2016). Conversion of DNs to physical units. In K. Zanter (Ed.), Landsat 8 (L8) data users handbook (2nd ed., pp. 60–61). Department of the Interior U.S. Geological Survey. https://doi.org/LSDS-1574

Van Doremalen, N., Bushmaker, T., Morris, D. H., Holbrook, M. G., Gamble, A., Williamson, B. N., Tamin, A., Harcourt, J. L., Thornburg, N. J., Gerber, S. I., Lloyd-Smith, J. O., De Wit, E., & Munster, V. J. (2020). Aerosol and surface stability of SARS-CoV-2 as compared with SARS-CoV-1. In New England Journal of Medicine (Vol. 382, Issue 16, pp. 1564–1567). Massachussetts Medical Society. https://doi.org/10.1056/NEJMc2004973

Weng, Q., Lu, D., & Schubring, J. (2004). Estimation of land surface temperature-vegetation abundance relationship for urban heat island studies. Remote Sensing of Environment, 89(4), 467–483. https://doi.org/10.1016/j.rse.2003.11.005

WHO. (2020). Environmental risk factors. https://www.who.int/cholera/environmental_health/en/

Xie, Z., Qin, Y., Li, Y., Shen, W., Zheng, Z., & Liu, S. (2020). Spatial and temporal differentiation of COVID-19 epidemic spread in mainland China and its influencing factors. Science of the Total Environment, 744, 140929. https://doi.org/10.1016/j.scitotenv.2020.140929

Zhang, H., Yang, L., Li, L., Xu, G., & Zhang, X. (2019). The epidemic characteristics and spatial autocorrelation analysis of hand, foot and mouth disease from 2010 to 2015 in Shantou, Guangdong, China. BMC Public Health, 19(1), 998. https://doi.org/10.1186/s12889-019-7329-5

Article Metrics

Abstract view(s): 361 time(s)
HTML: 63 time(s) PDF: 31 time(s)

Refbacks

  • There are currently no refbacks.