Searching for potential multi-hazard events during the last 1.5 million years of the Pleistocene epoch

Balazs Bradak(1*), Christopher Gomez(2), Ákos Kereszturi(3), Thomas Stevens(4)

(1) Kobe University, Japan
(2) Kobe University, Japan
(3) Research Centre for Astronomy and Earth Sciences, Konkoly Thege Miklos Astronomical Institute, Budapest, Hungary
(4) Department of Earth Sciences, Uppsala University, Sweden
(*) Corresponding Author

Abstract

Increasing attention has been paid to multi-hazards in environmental disaster studies produced during the last decade. Multi-hazard studies focus on the occurrence, interaction and effect of several natural hazards in the same region. Despite the increasing number of multi-hazard studies, few investigations have focused on global-scale multi-hazard events. With the aim of closing this gap, our study focuses on the identification of periods during the last 1.5 million years of the Pleistocene epoch, with the quasi-parallel appearance of natural hazards (e.g., asteroid impacts and large volcanic eruptions with a Volcanic Explosivity Index (VEI) of 8 and 7) amplifying their individual effects and thus causing long-term, global-scale changes. Of the seven identified potential multi-hazard events, three were considered as possible global-scale events with a longer term environmental (paleoclimatic) impact; dated to c.a., 1.4 Ma (marine isotope stage – MIS45), 1.0 Ma (MIS 27), and 100 ka (MIS 5c), respectively. Two additional periods (around 50 and 20 ka) were identified as being associated with more restricted scale multi-hazard events, which might cause a “Little Ice Age-like” climatic episode in the history of the Pleistocene Period. In addition, we present a hypothesis about the complex climatic response to a global-scale multi-hazard event consisting of a series of asteroid impacts and volcanic eruption linked to a geomagnetic polarity change, namely the Matuyama-Brunhes Boundary, which might be accompanied by global cooling and result in the final step of the Early Middle Pleistocene Transition.

Keywords

multi-hazard; global-scale event; asteroid impact; supervolcano eruption; geomagnetic field fluctuation

Full Text:

PDF

References

Artemieva, N., Morgan, J. (2017). Quantifying the release of climate‐active gases by large meteorite impacts with a case study of Chicxulub, Geophysical Research Letters Vol. 44, pp. 10180-10188. https://doi.org/10.1002/2017GL074879

Bath, M. (1981). Earthquake magnitude-Recent research and current trends, Earth Sci. Rev., Vol. 17, pp. 315-398. https://doi.org/10.1016/0012-8252(81)90014-3

Brown, S.K., Crosweller, H.S., Sparks, R.S.J., Cottrell, E., Deligne, N.I., Guerrero, N.O., Hobbs, L., Kiyosugi, K., Loughlin, S.C., Siebert, L., Takarada, S. (2014). Characterisation of the Quaternary eruption record: Analysis of the Large Magnitude Explosive Volcanic Eruptions (LaMEVE) database, Journal of Applied Volcanology Vol. 3, 5, doi:10.1186/2191-5040-3-5.

Butchart, N., Scaife, A.A. (2001), Removal of chlorofluorocarbons by increased mass exchange between the stratosphere and troposphere in a changing climate, Nature Vol. 410, pp. 799-802. https://doi.org/10.1038/35071047

Cande, S.C., Kent, D.V. (1995), Revised calibration of the geomagnetic polarity timescale for the late Cretaceous and Cenozoic, J. Geophys. Res., Vol. 100, pp. 6093-6095. https://doi.org/10.1029/94JB03098

Collins, G.S., Melosh, H.J.,Marcus, R.A. (2005), Earth Impact Effects Program: A Web-based computer program for calculating the regional environmental consequences of a meteoroid impact on Earth, Meteoritics & Planetary Science, Vol. 40, pp. 817-840. https://doi.org/10.1111/j.1945-5100.2005.tb00157.x

Colodner, D.C., Boyle, E.A., Edmond, J.M., Thomson, J. (1981), Post-depositional mobility of platinum, iridium and rhenium in marine sediments, Nature Vol. 292, pp. 417-420, https://doi.org/10.1038/358402a0

Crosweller, H.S., Arora, B., Brown, S.K., Cottrell, E., Deligne, N.I., Guerrero, N.O., Hobbs, L., Kiyosugi, K., Loughlin, S.C., Lowndes, J., Nayembil, M., Siebert, L., Sparks, R.S.J., Takarada, S., Venzke, E. (2012), Global database on large magnitude explosive volcanic eruptions (LaMEVE), J Appl. Volcanol. Vol. 1, 4. https://doi.org/10.1186/2191-5040-1-4

Channell, J.E.T., Xuan, C., Hodell, D.A. (2009), Stacking paleointensity and oxygen isotope data for the last 1.5 Myr (PISO-1500), Earth and Planetary Science Letters Vol. 283, pp. 14-23, https://doi.org/10.1016/j.epsl.2009.03.012

Duplissy, J., Enghoff, M. B., Aplin, K. L., Arnold, F., Aufmhoff, H., Avngaard, M., Baltensperger, U., Bondo, T., Bingham, R., Carslaw, K., Curtius, J., David, A., Fastrup, B., Gagné, S., Hahn, F., Harrison, R. G., Kellett, B., Kirkby, J., Kulmala, M., Laakso, L., Laaksonen, A., Lillestol, E., Lockwood, M., Mäkelä, J., Makhmutov, V., Marsh, N. D., Nieminen, T., Onnela, A., Pedersen, E., Pedersen, J. O. P., Polny, J., Reichl, U., Seinfeld, J. H., Sipilä, M., Stozhkov, Y., Stratmann, F., Svensmark, H., Svensmark, J., Veenhof, R., Verheggen, B., Viisanen, Y., Wagner, P. E., Wehrle, G., Weingartner, E., Wex, H., Wilhelmsson, M., Winkler, P. M. 2010, Results from the CERN pilot CLOUD experiment, Atmos. Chem. Phys., Vol.10, pp. 1635–1647, https://doi.org/10.5194/acp-10-1635-2010, 2010.

EID, 2018. Earth Impact Database: http://www.passc.net/EarthImpactDatabase (EID, 2018)

Erlykin, A.D., Wolfendale, A.W. (2011), Cosmic ray effects on cloud cover and their relevance to climate change, Journal of Atmospheric and Solar-Terrestrial Physics Vol. 73, No. 13, pp. 1681-1686. https://doi.org/10.1016/j.jastp.2011.03.001

Ermakov, I., Okhlopkov, V.P., Stozhkov, Y.I. (2009), The Impact of Cosmic Dust on the Earth’s Climate, Vestnik Moskovskogo Universiteta. Fizika Vol. 2, pp. 104-106.

Fassett, C. I. (2016), Analysis of impact crater populations and the geochronology of planetary surfaces in the inner solar system, Journal of Geophysical Research: Planets Vol. 121, No. 10, pp. 1900-1926, https://doi.org/10.1002/2016JE005094.

Ferretti, P., Crowhurst, S.J., David, B., Barbante, C. (2015), The Marine Isotope Stage 19 in the mid-latitude North Atlantic Ocean: astronomical signature and intra-interglacial variability. Quaternary Science Reviews, Vol. 108, pp. 95-110. https://doi.org/10.1016/j.quascirev.2014.10.024

Gersonde. R., Kyte, F.T., Bleil, U., Diekmann, B., Flores, J.A., Gohl, K., Grahl, G., Hagen, R., Kuhn, G., Sierro, F.J., Völker, D., Abelmann, A., Bostwick, J.A. (1997), Gersonde et al. Geological record and reconstruction of the late Pliocene impact of the Eltanin asteroid in the Southern Ocean, Nature Vol. 390, pp. 357-363. https://doi.org/10.1038/37044

Gersonde, R., Kyte, F.T., Frederichs, T., Bleil, U., Schenke, H-W., Kuhn, G. (2005), The late Pliocene impact of the Eltanin asteroid into the Southern Ocean – Documentation and environmental consequences, Geophysical Research Abstracts Vol. 7: 02449, SRef-ID: 1607-7962/gra/EGU05-A-02449.

Gill, J., Duncan, M., Budimir, M. (2016), Defining Multi-Hazard, The dynamics and impacts of interacting natural hazards. http://www.interactinghazards.com/defining-multi-hazard

Gill, J. C., Malamud, B. D. (2014), Reviewing and visualizing the interactions of natural hazards, Reviews of Geophysics Vol. 52, No. 4, pp. 680-722. https://doi.org/10.1002/2013RG000445

Gisler, G., Weaver, R., Gittings, M. (2011), Calculations of asteroid impacts into deep and shallow water, Pure and Applied Geophysics Vol. 168, pp. 1187-1198. https://doi.org/10.1007/s00024-010-0225-7

Goff, J., Chagué-Goff, C., Archer, M., Dominey-Howes, D., Turney, C. (2012), The Eltanin asteroid impact: possible South Pacific palaeomegatsunami footprint and potential implications for the Pliocene–Pleistocene transition, Journal of Quaternary Science Vol. 27, pp. 660-670. https://doi.org/10.1002/jqs.2571

Guyodo, Y., Valet, J-P. (1999), Global changes in intensity of the Earth’s magnetic field during the past 800kyr, Nature, Vol. 399, pp. 249-252. https://doi.org/10.1038/20420

Haruma, I., Kunio, K., Shoji, A. (2007), Effects of a large asteroid impact on ultra-violet radiation in the atmosphere, Geophysical Research Letters Vol. 34, L23805. https://doi.org/10.1029/2007GL030697

Heinze, A. N.; Denneau, L., Tonry, J. L., Smartt, S. J., Erasmus, N., Fitzsimmons, A., Robinson, J. E., Weiland, H., Flewelling, H., Stalder, B., Rest, A., Young, D. R. (2021), NEO Population, Velocity Bias, and Impact Risk from an ATLAS Analysis, The Planetary Science Journal Vol. 2/1, id.12, 17 pp. https://doi.org/10.3847/PSJ/abd325

Hergarten, S. ; Kenkmann, T. (2015), The number of impact craters on Earth: Any room for further discoveries? Earth and Planetary Science Letters Vol. 425, pp. 187-192. https://doi.org/10.1016/j.epsl.2015.06.009

Heslop, D., Dekkers, M.J., Langeresi, C.G. (2002), Timing and structure of the mid-Pleistocene transition: records from the loess deposits of northern China, Palaeogeography, Palaeoclimatology, Palaeoecology Vol. 185, pp. 133-143. https://doi.org/10.1016/S0031-0182(02)00282-1

Hughes, D.W. (2003), The approximate ratios between the diameters of terrestrial impact craters and the causative incident asteroids, Mon. Not. R. Astron. Soc. Vol. 338, pp. 999–1003. https://doi.org/10.1046/j.1365-8711.2003.06157.x

Kitaba, I., Hyodo, M., Katoh, S., Dettman, D.L., Sato, H. (2013), Midlatitude cooling caused by geomagnetic field minimum during polarity reversal, PNAS Vol. 110, pp. 1215-1220. https://doi.org/10.1073/pnas.1213389110

Kitaba, I., Hyodo, M., Nakagawa, T., Katoh, S., Dettman, D.L., Sato, H. (2017), Geological support for the Umbrella Effect as a link between geomagnetic field and climate, Scientific Reports 7:40682, https://doi.org/10.1038/srep40682

Kring, D.A., Melosh, H.J., Hunten, D.M. (1995), Possible climatic perturbations produced by impacting asteroids and comets, Meteoritics Vol. 30, pp. 530-550.

Kirkby, J., Curtius, J., Almeida, J., Dunne, E., Duplissy, J., Ehrhart, S., Franchin, A., Gagné, S., Ickes, L., Kürten, A., Kupc, A., Metzger, A., Riccobono, F., Rondo, L., Schobesberger, S., Tsagkogeorgas, G., Wimmer, D., Amorim, A., Bianchi, F., Breitenlechner, M., David, A., Dommen, J., Downard, A., Ehn, M., Flagan, R.C., Haider, S., Hansel, A., Hauser, D., Jud, W., Junninen, H., Kreissl, F., Kvashin, A., Laaksonen, A., Lehtipalo, K., Lima, J., Lovejoy, E.R., Makhmutov, V., Mathot, S., Mikkilä, J., Minginette, P., Mogo, S., Nieminen, T., Onnela, A., Pereira, P., Petäjä, T., Schnitzhofer, R., Seinfeld, J.H., Sipilä, M., Stozhkov, Y., Stratmann, F., Tomé, A., Vanhanen, J., Viisanen, Y., Vrtala, A., Wagner, P.E., Walther, H., Weingartner, E., Wex, H., Winkler, P.M., Carslaw, K.S., Worsnop, D.R., Baltensperger, U., Kulmala, M. (2011), Role of sulphuric acid, ammonia and galactic cosmic rays in atmospheric aerosol nucleation, Nature Vol. 476, pp. 429–433. https://doi.org/10.1038/nature10343

Kyte, F.T., Zhou, L., Wasson, J.T. (1988), New evidence on the size and possible effects of a late Pliocene oceanic impact, Science Vol. 241, pp. 63-65. doi: 10.1126/science.241.4861.63. PMID: 17815539.

Laj, C., Channell, J.E.T., (2007), Geomagnetic excursions, in: Kono, M. (ed.), Treatise on Geophysics, vol. 5, Geomagnetism, Elsevier, Amsterdam, pp. 373–416.

Lanci, L., Galeotti, S., Grimani, C., Huber, M. (2020), Evidence against a long-term control on Earth climate by Galactic Cosmic Ray Flux, Global and Planetary Change Vol. 185, January 2020, 103095 https://doi.org/10.1016/j.gloplacha.2019.103095

Lee, M-Y., Chen, C-H., Wei, K-Y., Iizuka, Y., Carey, S. (2004), First Toba supereruption revival, Geology Vol. 32, No.1, pp. 61–64. https://doi.org/10.1130/G19903.1

Li, C-L., Ouyang, Z-Y., Liu, D-S., An, Z-S. (1993), Microtektites and glassy microspherules in loess: their discoveries and implications, Science in China (Series B) Vol. 36, pp. 1141-1153.

Marcus,R.H., Melosh, J., Collins, G. (2004), Earth Impact Effects Program. (Imperial College London / Purdue University) https://impact.ese.ic.ac.uk/ImpactEarth/ImpactEffects/.

Marsh, N., Svensmark, H. (2000), Cosmic Rays, Clouds, and Climate, Space Science Reviews Vol. 94, pp. 215–230. https://doi.org/10.1023/A:1026723423896

Maslin, M. A, Brierly, C. M. (2015), The role of orbital forcing in the Early Middle Pleistocene Transition, Quaternary International Vol. 389, pp. 47-55. https://doi.org/10.1016/j.quaint.2015.01.047

McCormick, M. P., Thomason, L. W., Trepte, C. R. (1995), Atmospheric effects of the Mt Pinatubo eruption, Nature Vol. 373, pp. 399-404. https://doi.org/10.1038/373399a0

Mohr, P. A., Mitchell, J. G., Raynolds, R. G. H. (1980), Quaternary volcanism and faulting at O'A caldera, central Ethiopian Rift, Bull Volcanol Vol. 43, 173-190. https://doi.org/10.1007/BF02597619

Mudelsee, M., Stattegger, K. (1997), Exploring the structure of the mid-Pleistocene revolution with advanced methods of time-series analysis, International Journal of Earth Sciences/Geologiche Rundschau Vol. 86, pp. 499-511. https://doi.org/10.1007/s005310050157

Nyman, K.H.M. and Ditlevsen, P.D. (2019), The middle Pleistocene transition by frequency locking and slow ramping of internal period, Climate Dynamics Vol. 53, pp. 3023–3038. https://doi.org/10.1007/s00382-019-04679-3

Namiki, A., Rivalta, E., With, H., Walter, T. R. (2016), Sloshing of a bubbly magma reservoir as a mechanism of triggered eruptions, Journal of Volcanology and Geothermal Research Vol. 320, pp. 156–171. https://doi.org/10.1016/j.jvolgeores.2016.03.010

Newhall, C. G., Self, S. (1982), The volcanic explosivity index (VEI) an estimate of explosive magnitude for historical volcanism, J. Geophys. Res. Vol. 87 (C2), pp. 1231–1238. https://doi.org/10.1029/JC087iC02p01231

Newhall, C., Self, S., Robock, A. (2018), Anticipating future Volcanic Explosivity Index (VEI) 7 eruptions and their chilling impacts, Geosphere Vol. 14, No. 2, pp. 572–603. doi: https://doi.org/10.1130/GES01513.1

Oppenheimer, C. (2002), Limited global change due to largest known Quaternary eruption, Toba ≈74 kyr BP?, Quaternary Science Reviews Vol. 21, No. 14–15, pp. 1593–1609. https://doi.org/10.1016/S0277-3791(01)00154-8

Pierazzo, E., Garcia, R.R., Kinnison, D.E., Marsh, D.R., Lee-Taylor, J., Crutzen, P.J. (2010), Ozone perturbation from medium-size asteroid impacts in the ocean, Earth and Planetary Science Letters Vol. 299, pp. 263-272. https://doi.org/10.1016/j.epsl.2010.08.036

Pierce, J.R. and Adams, P.J. (2009), Can cosmic rays affect cloud condensation nuclei by altering new particle formation rates? Geophys Res Lett Vol. 36, L09820, https://doi.org/10.1029/2009GL037946

Pope, K.O., Baines, K.H., Ocampo, A.C., Ivanov, B.A. (1997), Energy, volatile production, and climatic effects of the Chicxulub Cretaceous/Tertiary impact, Journal of Geophysical Research Vol. 102(E9), pp. 21645-21664. https://doi.org/10.1029/97JE01743

Prasad, M. S., Mahale, V. P., Kodagali, V. N. (2007), New sites of Australasian microtektites in the central Indian Ocean: Implications for the location and size of source crater, J. Geophys. Res. Vol. 112, E06007, https://doi.org/10.1029/2006JE002857.

Rampino, M.R. (2002), Supereruptions as a threat to civilizations on Earth-like planets, Icarus Vol. 156, pp. 562-569. https://doi.org/10.1006/icar.2001.6808

Rampino, M. R.; Self, S. (1992), Volcanic winter and accelerated glaciation following the Toba Super-eruption, Nature Vol. 359 (6390), pp. 50–52. https://doi.org/10.1038/359050a0

Rampino, M. R., Self, S. (1993a), Climate–volcanism feedback and the Toba Eruption of ~74,000 Years ago", Quaternary Research Vol. 40, No. 3, pp. 269–280. https://doi.org/10.1006/qres.1993.1081

Rampino, M. R., Self, S. (1993b), Bottleneck in the Human Evolution and the Toba Eruption, Science Vol. 262 (5142), 1955. DOI: 10.1126/science.8266085

Renne, P.R., Deino, A.L., Hilgen, F.J., Kuiper, K.F., Mark, D.F., Smit, J. (2013), Time Scales of Critical Events Around the Cretaceous-Paleogene Boundary, Science Vol. 339, pp. 684-687. DOI: 10.1126/science.1230492

Robock, A.; Ammann, C.M.; Oman, L.; Shindell, D.; Levis, S.; Stenchikov, G. (2009), Did the Toba volcanic eruption of ~74k BP produce widespread glaciation? Journal of Geophysical Research Vol. 114 (D10): D10107. https://doi.org/10.1029/2008JD011652

Saunders RW, Forster PM, Plane JMP. (2007), Potential climatic effects of meteoric smoke in the Earth’s paleo-atmosphere, Geophysical Research Letters Vol. 34: L16801. https://doi.org/10.1029/2007GL029648

Schwarz, W.H., Trieloff, M., Bollinger, K., Gantert, N., Fernandes, V.A., Meyer, H-P., Povenmire, H., Jessberger, E.K., Guglielmino, M., Koeberl, C. (2016), Coeval ages of Australasian, Central American and Western Canadian tektites reveal multiple impacts 790 ka ago, Geochimica et Cosmochimica Acta Vol. 178, pp. 307–319. https://doi.org/10.1016/j.gca.2015.12.037

Sieh, K., Herrin, J., Jicha, B.,Angel, D. S., Moore, J.D.P., Banerjee, P., Wiwegwin, W., Sihavong, V., Singer, B., Chualawanich, T., Charusiri, P. (2020), Australasian impact crater buried under the Bolaven volcanic field, Southern Laos, PNAS Vol. 117, pp. 1346–1353. https://doi.org/10.1073/pnas.1904368116

Singer, B.S., Guillou, H., Jicha, B.R., Zanella, E., Camps, P. (2014), Refining the Quaternary Geomagnetic Instability Time Scale (GITS): Lava flow recordings of the Blake and Post-Blake excursions, Quaternary Geochronology Vol. 21, pp. 16-28. https://doi.org/10.1016/j.quageo.2012.12.005

Sloan, T., Wolfendale, A.W. (2013), Cosmic rays, solar activity and the climate, Environ. Res. Lett. Vol. 8, 045022. https://doi.org/10.1088/1748-9326/8/4/045022

Soreghan, G.S., Soreghan, M.J., Heavens, N.G. (2019), Explosive volcanism as a key driver of the late Paleozoic ice age, Geology Vol. 47, pp. 600–604, https:// doi .org /10 .1130 /G46349.1

Stuart, J.S, Binzel, R.P. (2004), Bias-corrected population, size distribution, and impact hazard for the near-Earth objects, Icarus Vol. 170, pp. 295-311. https://doi.org/10.1016/j.icarus.2004.03.018

Suganuma, Y., Okada, M., Horie, K., Kaiden, H., Takehara, M., Senda, R., Kimura, J.-I., Kawamura, K., Haneda, Y., Kazaoka, O., Head, M. J. (2015), Age of Matuyama-Brunhes boundary constrained by U–Pb zircon dating of a widespread tephra, Geology Vol. 43, pp. 491–494. https://doi.org/10.1130/G36625.1

Suganuma,Y., Haneda,Y., Kameo,K., Kubota,Y., Hayashi,H., Itaki,T., Okuda,M., Head,M.J., Sugaya,M., Nakazato,H., Igarashi,A., Shikoku,K., Hongo,M., Watanabe, M., Satoguchi,Y., Takeshita,Y., Nishida,N., Izumi,K., Kawamura,K., Kawamata,M., Okuno,J., Yoshida,T., Ogitsu, I., Yabusaki, H., Okada, M. 2018. Paleoclimatic and paleoceanographic records through Marine Isotope Stage 19 at the Chiba composite section, central Japan: A key reference for the Early–Middle Pleistocene Subseries boundary, Quaternary Science Reviews Vol. 191, pp. 406-430. https://doi.org/10.1016/j.quascirev.2018.04.022.

Svensmark, H., Friis-Christensen, E. 1997. Variation of cosmic ray flux and global cloud coverage—a missing link in solar-climate relationships, Journal of Atmospheric and Solar-Terrestrial Physics Vol. 59, No. 11, pp. 1225-1232. https://doi.org/10.1016/S1364-6826(97)00001-1

Svensmark, H., Bondo, T. and Svensmark, J. (2009), Cosmic ray decreases affect atmospheric aerosols and clouds, Geophys Res Lett Vol. 36, L15101. https://doi.org/10.1029/2009GL038429

Ueno,Y., Hyodo, M.,Yang, T., Katoh, S. (2019), Intensified East Asian winter monsoon during the last geomagnetic reversal transition, Scientific Reports Vol.9:9389. https://doi.org/10.1038/s41598-019-45466-8

Tauxe, L., Herbert, T., Shackleton, N. J., Kok, Y. S. (1996), Astronomical calibration of the Matuyama-Brunhes boundary: consequences for magnetic remnance acquisition in marine carbonates and the Asian loess sequences, Earth Planet. Sci. Lett. Vol. 140, pp. 133–146. https://doi.org/10.1016/0012-821X(96)00030-1

Tinsley, B.A. (2000), Influence of solar wind on the global electric circuit, and inferred effects on cloud microphysics, temperature, and dynamics in the troposphere, Space Sci Rev Vol. 94, pp. 231–258. https://doi.org/10.1023/A:1026775408875

Wagner, G., Livingstone, D.M., Masarik, J., Muscheler, R., Beer, J. (2001), Some results relevant to the discussion of a possible link between cosmic rays and Earth’s climate, J Geophys Res Vol. 106, pp. 3381–3387. https://doi.org/10.1029/2000JD900589

Ward, L. P. (2009), Sulfur dioxide initiates global climate change in four ways, Thin Solid Films Vol. 517, pp. 3188–3203. https://doi.org/10.1016/j.tsf.2009.01.005

Ward, S.N., Asphaug, E. (2002), Impact tsunami–Eltanin, Deep-Sea Research Part II. Topical Studies in Oceanography Vol. 49, No. 6, pp. 1073-1079. https://doi.org/10.1016/S0967-0645(01)00147-3

Watt, S.F.L., Pyle, D.M., Mather, T.A. (2009), The influence of great earthquakes on volcanic eruption rate along the Chilean subduction zone, Earth and Planetary Science Letters Vol. 277, pp. 399–407. https://doi.org/10.1016/j.epsl.2008.11.005

Zhou, L.P., Shackleton, N.J. (1999), Misleading positions of geomagnetic reversal boundaries in Eurasian loess and implications for correlation between continental and marine sedimentary sequences, Earth and Planetary Science Letters Vol. 168, pp. 117–130. https://doi.org/10.1016/S0012-821X(99)00052-7

Zielinski, G. A., Mayewski, P. A., Meeker, L. D., Whitlow, S., Twickler, M.S., Taylor, K. (1996), Potential atmospheric impact of the Toba Mega-Eruption ∼71,000 years ago, Geophysical Research Letters Vol. 23, No. 8, pp. 837-840. https://doi.org/10.1029/96GL00706

Article Metrics

Abstract view(s): 393 time(s)
PDF: 187 time(s)

Refbacks

  • There are currently no refbacks.