Lake and Stream Buffer Zone Widths' Effects on Nutrient Export to Lake Rawapening, Central Java, Indonesia: A Simple Simulation Study

F. Maftukhakh Hilmya Nada(1*), Nunung Puji Nugroho(2), Nurzawani Binti Md Sofwa(3)

(1) Badan Riset dan Inovasi Nasional (BRIN)
(2) Badan Riset dan Inovasi Nasional (BRIN)
(3) Environmental Health Program, Faculty of Health Sciences, Universiti Teknologi MARA Sarawak Branch, 94300 Kota Samarahan, Sarawak, Malaysia
(*) Corresponding Author


Lake ecosystems in Indonesia face serious environmental problems. One of those problems is eutrophication caused by excessive plant nutrients, particularly nitrogen (N) and phosphorus (P). Water quality degradation and biodiversity loss are the effects of eutrophication. The government of Indonesia (GoI) has issued a regulation on determining lake and stream buffer zones, but it has not been fully implemented in the field. Additionally, the data related to the effects of each buffer zone width is not available. This study aims to begin to fill this gap. It simulates the effect of lake and stream buffer zone widths on nutrient export to Rawapening Lake. The Nutrient Retention sub-model, which is part of InVEST (Integrated Valuation of Environmental Services and Tradeoffs) software, has been used for this research to analyse information from several data sources, including a Digital Elevation Model (DEM) and measurements of soil depth, annual rainfall, land cover/use, watershed/sub-watershed boundaries, and biophysical conditions. Several studies of eutrophication in Rawapening Lake have measured the magnitude of eutrophication but have not discussed the effects of buffer zone widths. Therefore, this study accommodates the updated data on how much effect of buffer zone widths on the reduction of nutrient export. Five scenarios of buffer zone width are considered:  30 m., 90 m., and 150 m, where the lake buffer zone widths and the stream buffer zone width are 30 m. The results indicated that the maximum nutrient export reduction of lake buffer zones was only 2.63% (for N) and 3.56% (for P). On the other hand, the 30 m stream buffer zone width reduced the nutrient export to Rawapening Lake by up to 43.05% for N and by 44.90% for P. A 30 m combined lake and stream buffer zone width slightly increases the nutrient export reduction effectiveness, i.e., 0.41% and 0.56% for N and P, respectively.


lake eutrophication; buffer zone; nutrient export; catchment area; Rawapening Lake

Full Text:



Agustiningsih, D., Sasongko, S. B., & Sudarno. (2012). Analisis Kualitas Air dan Strategi Pengendalian Pencemaran Air Sungai Blukar Kabupaten Kendal. Jurnal Presipitasi, 9(2), 65–71.

Anbumozhi, V., Radhakrishnan, J., & Yamaji, E. (2005). Impact of riparian buffer zones on water quality and associated management considerations. Ecological Engineering, 24(5), 517–523. doi: 10.1016/j.ecoleng.2004.01.007

Apriliyana, D. (2015). Pengaruh perubahan penggunaan lahan SubDAS Rawapening terhadap erosi dan sedi-mentasi Danau Rawapening. Jurnal Pembangunan Wilayah Dan Kota, 11(1), 103–116. doi: 10.14710/pwk.v11i1.8661

Bhagowati, B., & Ahamad, K. U. (2019). A review on lake eutrophication dynamics and recent developments in lake modeling. Ecohydrology & Hydrobiology, 19(1), 155-166. doi: 10.1016/j.ecohyd.2018.03.002

Brooks, K. N., Ffolliott, P. F., Gregersen, H. M., & DeBano, L. F. (2013). Hydrology and the management of watersheds - fourth edition. John Wiley & Sons, Inc.

Cao, X., Song, C., Xiao, J., & Zhou, Y. (2018). The optimal width and mechanism of riparian buffers for storm water nutrient removal in the Chinese eutrophic Lake Chaohu Watershed. Water, 10(10), 1489. doi: 10.3390/w10101489

Chislock, M. F., Doster, E., Zitomer, R. A., & Wilson, A. E. (2013). Eutrophication: causes, consequences, and controls in aquatic ecosystems. Nature Education Knowledge, 4(4), 10.

Chulafak, G. A., Kushardono, D., & Yulianto, F. (2021). Utilization of multi-temporal Sentinel-1 satellite im-agery for detecting aquatic vegetation change in Lake Rawapening, Central Java, Indonesia. Papers in Applied Geography, 7(3), 316–330. doi: 10.1080/23754931.2021.1890193

Irianto, E. W., & Triweko, R. W. (2019). Eutrofikasi waduk dan danau: Permasalahan, pemodelan, dan upaya pengendalian. ITB Press.

Khan, M. N., & Mohammad, F. (2014). Eutrophication: challenges and solutions. In Eutrophication: causes, consequences and control (pp. 1–15). Springer.

KLH. (2011). Gerakan Penyelamatan Danau (Germadan) Danau Rawapening. Kementerian Lingkungan Hidup (KLH).

KLH. (2014a). Gerakan Penyelamatan Danau (GERMADAN) Tempe. Kementerian Lingkungan Hidup (KLH).

KLH. (2014b). Gerakan Penyelamatan Danau (GERMADAN) Toba. Kementerian Lingkungan Hidup (KLH).

KLH. (2014c). Grand design penyelamatan ekosistem danau Indonesia. Kementerian Lingkungan Hidup (KLH) .

Li, C., Wang, Y., Ye, C., Wei, W., Zheng, B., & Xu, B. (2019). A proposed delineation method for lake buffer zones in watersheds dominated by non-point source pollution. Science of the Total Environment, 660, 32–39. doi: 10.1016/j.scitotenv.2018.12.468

Li, Y., Abegunrin, T. P., Guo, H., Huang, Z., Are, K. S., Wang, H., Gu, M., & Wei, L. (2020). Variation of dis-solved nutrient exports by surface runoff from sugarcane watershed is controlled by fertilizer applica-tion and ground cover. Agriculture, Ecosystems and Environment, 303(May), 107121. doi: 10.1016/j.agee.2020.107121

Longley, K. R., Huang, W., Clark, C., & Johnson, E. (2019). Effects of nutrient load from St. Jones River on water quality and eutrophication in Lake George, Florida. Limnologica, 77, 125687. doi: 10.1016/j.limno.2019.125687

Mammides, C. (2020). A global assessment of the human pressure on the world's lakes. Global Environmen-tal Change, 63(February 2019), 102084. doi: 10.1016/j.gloenvcha.2020.102084

Martinsen, K. T., & Sand-Jensen, K. (2022). Predicting water quality from geospatial lake, catchment, and buffer zone characteristics in temperate lowland lakes. Science of the Total Environment, 851. doi: 10.1016/j.scitotenv.2022.158090

Mayer, P. M., Reynolds, S. K., & Canfield, T. J. (2005). Riparian buffer width, vegetative cover, and nitrogen removal effectiveness: a review of current science and regulations. In Epa/600/R-05/118. National Risk Management Research Laboratory Office of Research and Development U.S. Environmental Pro-tection Agency Cincinnati,.

Ministry of Environment and Forestry Republic of Indonesia. (2017). Petunjuk Teknis Restorasi Kualitas Air Sungai.

Ministry of Public Works and Housing. (2015). Peraturan Menteri Pekerjaan Umum dan Perumahan Rakyat Nomor 28/PRT/M/2015 tentang Penetapan Garis Sempadan Sungai dan Garis Sempadan Danau. In Berita Negara Republik Indonesia Tahun 2015 Nomor 772. Kementerian Pekerjaan Umum dan Pe-rumahan Rakyat Republik Indonesia.

Morsy, K., Morsy, A., Morsy, M., & Thakeb, H. (2017). Eutrophication of aquatic ecosystems: A viewpoint on the environmental impact of climate change. Journal of Environmental Science and Engineering B, 6, 506–514. doi: 10.17265/2162-5263/2017.10.002

Murtiono, U. H., & Wuryanta, A. (2016). Telaah eutrofikasi pada Waduk Alam Rawapening. Prosiding Semi-nar Nasional Geografi UMS 2016: Upaya Pengurangan Risiko Bencana Terkait Perubahan Iklim, 170–181.

Nugroho, N. P. (2017). Estimasi hasil air dari daerah tangkapan air Danau Rawa Pening dengan menggunakan Model InVEST. Majalah Ilmiah Globë, 19(2), 157–166. doi: 10.24895/MIG.2017.19-2.578

Nugroho, N. P. (2022a). Sediment export estimation from the catchment area of Lake Rawapening using In-VEST model. IOP Conference Series: Earth and Environmental Science, 950(1), 12072. doi: 10.1088/1755-1315/950/1/012072

Nugroho, N. P. (2022b). Spatial distribution of nutrient export from the catchment area of Lake Rawapening (E. Yulihastin, P. Abadi, P. Sitompul, & W. Harjupa, Eds.; pp. 517–529). Springer Nature Singapore.

Nurmi, L. (2010). Buffer Zone Plans for Lake Nakuru National Park and for Njoro River in Kenya. Laurea University of Applied Sciences.

Pu, J., Wang, S., Ni, Z., Wu, Y., Liu, X., Wu, T., & Wu, H. (2021). Implications of phosphorus partitioning at the suspended particle-water interface for lake eutrophication in China's largest freshwater lake, Po-yang Lake. Chemosphere, 263, 128334.

Piranti, A. S. (2019). Pengendalian eutrofikasi Danau Rawapening (Monograf) (T. Setyawardani, Ed.). Pen-erbit Universitas Jenderal Soedirman.

Ptak, M., & Ławniczak, A. E. (2018). Changes in land use in the buffer zone of lake of the Mała Wełna catch-ment. Limnological Review, 12(1), 35–44. doi: 10.2478/v10194-011-0043-z

Republik Indonesia. (2021). Peraturan Presiden Nomor 60 Tahun 2021 tentang Penyelamatan Danau Prioritas Nasional. In Lembaran Negara Republik Indonesia Tahun 2021 Nomor 143. Sekretariat Kabinet Re-publik Indonesia.

Shapiro, H. (2015). The Importance of Streamside Buffers in Conservation. Triangle Land Conservancy.

Sharp, R., Tallis, H. T., Ricketts, T., Guerry, A. D., Wood, S. A., Chaplin-Kramer, R., Nelson, E., Ennaanay, D., Wolny, S., Olwero, N., Vigerstol, K., Pennington, D., Mendoza, G., Aukema, J., Foster, J., Forrest, J., Cameron, D., Arkema, K., Lonsdorf, E., … Bierbower, W. (2015). InVEST 3.1.3 User's Guide. The Natural Capital Project, Stanford University, University of Minnesota, The Nature Conservancy, and World Wildlife Fund.

Sharps, K., Masante, D., Thomas, A., Jackson, B., Redhead, J., May, L., Prosser, H., Cosby, B., Emmett, B., & Jones, L. (2017). Comparing strengths and weaknesses of three ecosystem services modelling tools in a diverse UK river catchment. Science of the Total Environment, 584, 118–130. doi: 10.1016/j.scitotenv.2016.12.160

Soeprobowati, T., Hadisusanto, S., Gell, P., & Zawadzki, A. (2012). The diatom stratigraphy of Lake Rawapening, implying eutrophication history. American Journal of Environmental Sciences, 8(3), 334–344. doi: 10.3844/ajessp.2012.334.344

Tu, L., Jarosch, K. A., Schneider, T., & Grosjean, M. (2019). Phosphorus fractions in sediments and their re-levance for historical lake eutrophication in the Ponte Tresa basin (Lake Lugano, Switzerland) since 1959. Science of the total environment, 685, 806-817.

Vought, L.B.M., Pinay, G., Fuglsang, A., & Ruffinoni, C. (1995). Structure and function of buffer strips from a water quality perspective in agricultural landscapes. Landscape and Urban Planning, 31(1), 323–331. doi: 10.1016/0169-2046(94)01057-F

Wang, M., Duan, L., Wang, J., Peng, J., & Zheng, B. (2020). Determining the width of lake riparian buffer zones for improving water quality base on adjustment of land use structure. Ecological Engineering, 158(July), 106001. doi: 10.1016/j.ecoleng.2020.106001

Wuryanta, A., & Murtiono, U. H. (2018). Spatial Analysis for Eutrophication Management in The Lake Rawapening, Seamarang District Central Java. Media Pengembangan Ilmu Dan Profesi Kegeografian, 15(1), 16–30.

Yang, C., Yang, P., Geng, J., Yin, H., & Chen, K. (2020). Sediment internal nutrient loading in the most pollut-ed area of a shallow eutrophic lake (Lake Chaohu, China) and its contribution to lake eutrophication. Environmental Pollution, 262, 114292.

Zahara, S., Umroh, & Utami, E. (2016). Pengaruh Buangan Limbah Cair Pabrik Kelapa Sawit Terhadap Kuali-tas Air Sungai Mabat Kabupaten Blora. Jurnal Akuatik Sumberdaya Perairan, 10(1), 21–25.

Zhang, X., Zhao, J., Ding, L., Li, Y., Liu, H. X., Zhao, Y. F., & Fu, G. (2022). Eutrophication evolution trajec-tory influenced by human activities and climate in the shallow Lake Gehu, China. Ecological Indica-tors, 138(April), 108821. doi: 10.1016/j.ecolind.2022.108821

Zubaidah, T., Karnaningroem, N., & Slamet, A. (2019). The self-purification ability in the Rivers of Banjar-masin, Indonesia. Journal of Ecological Engineering, 20(2), 177–182. doi: 10.12911/22998993/97286

Article Metrics

Abstract view(s): 156 time(s)
PDF: 104 time(s)


  • There are currently no refbacks.