Vulnerability Analysis of School Buildings to Tsunami in the Cilacap Coastal Area

Hercules Pungky Naga Dewa(1), Anang Widhi Nirwansyah(2*), Ratna Sari Dewi(3), Ismail Demirdag(4)

(1) Geography Education, Faculty of Teacher Training and Education (FKIP), Universitas Muhammadiyah Purwokerto, Jl. KH. Ahmad Dahlan, PO BOX 202 Purwokerto 53182, Kembaran, Banyumas
(2) Social Science Department, Graduates School of Universitas Muhammadiyah Purwokerto, Banyumas 53182, Indonesia
(3) Center for Marine and Coastal Mapping, Geospatial Information Agency (BIG), Jl. Raya Jakarta-Bogor Km. 46, Cibinong, Bogor, 16911-Indonesia
(4) Department of City and Regional Planning, Ataturk University, Turkey
(*) Corresponding Author

Abstract

Cilacap is one of several areas that experienced significant damage due to the Pangandaran tsunami in 2007. Currently, tsunamis are one of the most serious threats to coastal areas as they can cause devastation to the function of coastal areas. The physical environment can extensively affect the probability of damage caused by tsunamis. In addition, it is critical to maintain building stability as a substantial component in the integrated management efforts of coastal areas. The aim of this research is to assess the physical susceptibility and the vulnerability of school buildings to tsunami, particularly senior high school buildings (known as SMA/MA) located in the coastal area of the Cilacap region. This research is essential for the continuity of learning and teaching activities in the coastal area. Therefore, mapping the physical environment and school buildings in the coastal area of the Cilacap region is necessary. In this study, the physical approach method and Papathoma Vulnerability Tsunami Assessment (PVTA) model were optimally applied to assess coastal vulnerabilities to tsunami. Ultimately, the results were further evaluated by using cross-tabulation. The results confirm that specific coastal areas were categorised as having “moderate to high” susceptibility. Simultaneously, owing to the field survey, we determined that school buildings at this location were made of simple reinforced concrete materials. Notwithstanding that the vulnerability of the school buildings were low, the conditions were deemed to be reasonably harmful given that the schools were located in a “moderate to high” susceptibility. The results of this study have implications for the level of potential physical susceptibility of the coastal areas and the vulnerability of school buildings to tsunamis in the Cilacap region.

Keywords

Tsunami;Physical Susceptibility;Building Vulnerability;Cilacap

Full Text:

PDF HTML

References

Alberico, I., Di Fiore, V., Iavarone, R., Petrosino, P., Piemontese, L., Tarallo, D., Punzo, M., & Marsella, E. (2015). The tsunami vulnerability assessment of urban environments through freely available datasets: The case study of Napoli city (Southern Italy). Journal of Marine Science and Engineering, 3(3), 981–1005. doi : 10.3390/ jmse3030981

Badan Informasi Geospasial (BIG). (2018). DEMNAS. Badan Informasi Geospasial. https://tanahair.indonesia. go.id/demnas/#/

Basabe, P., & Beer, T. (2013). Encyclopaedia Of Natural Hazards Encyclopaedia of Earth Sciences Series (Peter T. Bobrowsky, Ed.; 1st ed.). Springer, Dordrecht. doi : 10.1007/978-1-4020-4399-4

Batzakis, D. V., Misthos, L. M., Voulgaris, G., Tsanakas, K., Andreou, M., Tsodoulos, I., & Karymbalis, E. (2020). Assessment of building vulnerability to tsunami hazard in kamari (Santorini Island, Greece). Journal of Marine Science and Engineering, 8(11), 1–18. doi : 10.3390/jmse8110886

BMKG. (2017). Tentang Tsunami. Badan Meteorologi, Klimatologi Dan Geofisika Wilayah 3 Denpasar. http://balai3. denpasar.bmkg.go.id/tentang-tsunami

BMKG. (2019). Katalog Gempabumi Signifikan dan Merusak 1821-2018 (T. Prasetya & Daryono, Eds.; 1st ed.). Pusat Gempabumi dan Tsunami Kedeputian Bidang Geofisika BMKG.

Bohari, J. A., Widana, I. D. K. K., Bahar, F., & Widyaningrum, N. (2021). Analysis of the structural framework for schools affected by the Sunda Strait Tsunami in Pandeglang Regency. Technium Social Sciences Journal, 25, 552–566. doi : 10.47577/tssj.v25i1.5021

BPS Kabupaten Cilacap. (2022). Kabupaten Cilacap dalam Angka 2022 (BPS Kabupaten Cilacap, Ed.). BPS Kabupaten Cilacap. https://cilacapkab.bps.go.id/publication/2022/02/25/b5cf985453a88166e02db335/kabupaten-cilacap-dalam-angka-2022.html

Dall’Osso, F., Maramai, A., Graziani, L., Brizuela, B., Cavalletti, A., Gonella, M., & Tinti, S. (2010). Applying and validating the PTVA-3 model at the Aeolian Islands, Italy: Assessment of the vulnerability of buildings to tsunamis. Natural Hazards and Earth System Science, 10(7), 1547–1562. doi : 10.5194/nhess-10-1547-2010

De Risi, R., & Goda, K. (2016). Probabilistic earthquake–Tsunami multi-hazard analysis: Application to the Tohoku Region, Japan. Frontiers in Built Environment, 2 (10), 1-25. doi : 10.3389/fbuil.2016.00025

De Silva Nusantara, C. A., Windupranata, W., Hayatiningsih, I., & Hanifa, N. R. (2021). Mapping of IOC-UNESCO Tsunami Ready Indicators in the Pangandaran Village, Indonesia. IOP Conference Series: Earth and Environmental Science, 925(1). doi : 10.1088/1755-1315/925/1/012041

Dewi, R. S. (2012). A-Gis Based Approach of an Evacuation Model for Tsunami Risk Reduction. Journal of Integrated Disaster Risk Management, 2(2), 108–139. doi : 10.5595/idrim.2012.0023

Dominey-Howes, D., & Papathoma, M. (2007). Validating a tsunami vulnerability assessment model (the PTVA Model) using field data from the 2004 Indian Ocean tsunami. Natural Hazards, 40(1), 113–136. doi : 10.1007/s11069-006-0007-9

Faiqoh, I., Gaol, J. L., & Ling, M. M. (2013). Vulnerability Level Map of Tsunami Disaster in Pangandaran Beach, West Java. International Journal of Remote Sensing and Earth Sciences (IJReSES), 10(2), 90–103. doi : 10.30536/ j.ijreses.2013.v10.a1848

Fritz, H. M., Kongko, W., Moore, A., McAdoo, B., Goff, J., Harbitz, C., Uslu, B., Kalligeris, N., Suteja, D., Kalsum, K., Titov, V., Gusman, A., Latief, H., Santoso, E., Sujoko, S., Djulkarnaen, D., Sunendar, H., & Synolakis, C. (2007). Extreme runup from the 17 July 2006 Java tsunami. Geophysical Research Letters, 34(12), 1–5. doi : 10.1029/2007GL029404

Gerhanae, N. Y., & Kamiludin, U. (2016). Coastal Characteristics of Papela and Adjacent Area, Rote Island, East Nusa Tenggara. Bulletin Of The Marine Geology, 28(1), 21. doi : 10.32693/bomg.28.1.2013.52

Hansson, S., Orru, K., Siibak, A., Bäck, A., Krüger, M., Gabel, F., & Morsut, C. (2020). Communication-related vulnerability to disasters: A heuristic framework. International Journal of Disaster Risk Reduction, 51. doi : 10.1016/j.ijdrr.2020.101931

Honesti, L., Abd Majid, M. Z., Muchlian, M., & Djali, N. (2014). Assessing Building Vulnerability to Tsunami Hazard in Padang. Jurnal Teknologi, 69(6). doi : 10.11113/jt.v69.3318

Isdianto, A., Kurniasari, D., Subagiyo, A., Haykal, M. F., & Supriyadi, S. (2021). Pemetaan Kerentanan Tsunami untuk Mendukung Ketahanan Wilayah Pesisir. Jurnal Permukiman, 16(2), 90. doi : 10.31815/jp.2021.16.90-100

Kemdikbud RI. (2022, December 22). Sekolah Kita. Kemdikbud RI. https://sekolah.data.kemdikbud.go.id/

Kempa, M. (2018). Analisis Tingkat Kerusakan Bangunan Gedung Sekolah Menengah Pertama (SMP) Di Maluku. Seminar Nasional “Archipelago Engineering” (ALE), 198–203. doi : 10.30598/ale.1.2018.198-203

KLHK. (2020). Peta Penggunaan Lahan 2020. ArcGIS REST Services Directory. https://dbgis.menlhk.go.id /server/rest/services/Time_Series/PL2020/MapServer

Laksono, F. A. T., Widagdo, A., Aditama, M. R., Fauzan, M. R., & Kovács, J. (2022). Tsunami Hazard Zone and Multiple Scenarios of Tsunami Evacuation Route at Jetis Beach, Cilacap Regency, Indonesia. Sustainability (Switzerland), 14(5), 1153–1162. doi : 10.3390/su14052726

Lavigne, F., Gomez, C., Giffo, M., Wassmer, P., Hoebreck, C., Mardiatno, D., Prioyono, J., & Paris, R. (2007). Field observations of the 17 July 2006 Tsunami in Java. Natural Hazards and Earth System Science, 7(1), 177–183. doi : 10.5194/nhess-7-177-2007

Madani, S., Khaleghi, S., & Jannat, M. R. A. (2017). Assessing building vulnerability to tsunami using the PTVA-3 model: A case study of Chabahar Bay, Iran. Natural Hazards, 85(1), 349–359. doi : 10.1007/s11069-016-2567-7

Mandey, T. C., Ismanto, A., Sugianto, D. N., Purwanto, P., Widiaratih, R., & Harsono, G. (2021). The Modelling of Tsunami Wave Run-Up and Vulnerability Zone Analysis In Cipatujah, Tasikmalaya District. Indonesian Journal of Oceanography, 3(4), 400–408. doi : 10.14710/ijoce.v3i4.12491

Mardiatno, D., Malawani, M. N., & Nisaa’, R. M. (2020). The future tsunami risk potential as a consequence of building development in Pangandaran Region, West Java, Indonesia. International Journal of Disaster Risk Reduction, 46. doi : 10.1016/j.ijdrr.2020.101523

McGovern, D. J., Allsop, W., Rossetto, T., & Chandler, I. (2023). Large-scale experiments on tsunami inundation and overtopping forces at vertical sea walls. Coastal Engineering, 17, 104222. doi : 10.1016/j.coastaleng.2022.104222

Muhaimin Ridwan Wong, M., Ahmad, N., Syamsidik, Suppasri, A., & Othman, M. (2022). Multi-indicator building vulnerability index for assessing tsunami-induced building damages. E3S Web of Conferences, 340, 04002. doi : 10.1051/e3sconf/202234004002

Naja, A. D., & Mardiatno, D. (2017). Analisis Kerentanan Fisik Permukiman Di Kawasan Rawan Bencana Tsunami Wilayah Parangtritis, Yogyakarta. Jurnal Bumi Indonesia, 7(1), 1–10.

Nisaa’, R. M., Sartohadi, J., & Mardiatno, D. (2019). Penilaian Kerentanan Bangunan Terhadap Tsunami Menggunakan Model PTVA-4 Di Kawasan Wisata Batuhiu, Kabupaten Pangandaran. MAJALAH ILMIAH GLOBE, 21(2), 79. doi : 10.24895/mig.2019.21-2.905

Nisaa’, R. M., Sartohadi, J., & Mardiatno, D. (2021). Participatory GIS Approach to Assessing Building Vulnerability to Tsunamis in Pangandaran Regency. Forum Geografi, 35(2). doi : 10.23917/forgeo.v35i2.14003

OpenStreetMap. (2023). HOT Export Tool. Humanitarian OpenStreetMap Team. https://export.hotosm.org/id/v3/

Papathoma, M., & Dominey-Howes, D. (2003). Tsunami vulnerability assessment and its implications for coastal hazard analysis and disaster management planning, Gulf of Corinth, Greece. Natural Hazards and Earth System Sciences, 3, 733–747. doi : 10.5194/nhess-3-733-2003

Papathoma-Köhle, M., Schlögl, M., & Fuchs, S. (2019). Vulnerability indicators for natural hazards: an innovative selection and weighting approach. Scientific Reports, 9(1). doi : 10.1038/s41598-019-50257-2

Pazzi, V., Morelli, S., Pratesi, F., Sodi, T., Valori, L., Gambacciani, L., & Casagli, N. (2016). Assessing the safety of schools affected by geo-hydrologic hazards: The geohazard safety classification (GSC). International Journal of Disaster Risk Reduction, 15, 80–93. doi : 10.1016/j.ijdrr.2015.11.006

Petrus Subardjo, R. A. (2015). Uji Kerawanan Terhadap Tsunami Dengan SIG Kec Kretek Yogyakarta. Jurnal Kelautan Tropis, 18, 82–97. doi : 10.14710/jkt.v18i2.519

Pramana, B. S. (2015). Pemetaan Kerawanan Tsunami Di Kecamatan Pelabuhanratu Kabupaten Sukabumi. SOSIO DIDAKTIKA: Social Science Education Journal, 2(1), 76–91. doi : 10.15408/sd.v2i1.1383

PVMBG. (2014). Tanggapan Gempa Bumi Cilacap 25 Januari 2014. Pusat Vulkanologi Dan Mitigasi Bencana Geologi - Badan Geologi. https://vsi.esdm.go.id/index.php/gempabumi-a-tsunami/kejadian-gempabumi-a-tsunami/304-tanggapan-gempa-bumi-cilacap-25-januari-2014

Reese, S., Cousins, W. J., Power, W. L., Palmer, N. G., Tejakusuma, I. G., & Nugrahadi, S. (2007). Tsunami vulnerability of buildings and people in South Java - Field observations after the July 2006 Java tsunami. Natural Hazards and Earth System Science, 7(5), 573–589. doi : 10.5194/nhess-7-573-2007

Sambah, A. B., & Miura, F. (2014). Remote sensing and spatial multi-criteria analysis for tsunami vulnerability assessment. Disaster Prevention and Management: An International Journal, 23(3), 271–295. doi : 10.1108/DPM-05-2013-0082

Sambah, A. B., Tri Djoko, L., & Bayu, R. (2019). Satellite image analysis and GIS approaches for tsunami vulnerability assessment. IOP Conference Series: Earth and Environmental Science, 370(1). doi : 10.1088/1755-1315/370 /1/012068

Stanberry, L. R., Thomson, M. C., & James, W. (2018). Prioritising the needs of children in a changing climate. PLOS Medicine, 15(7), 1–4. doi : 10.1371/journal.pmed.1002627

Suhita, N. P. A. R., Siregar, V. P., & Lumban-Gaol, J. (2021). Coastal vulnerability mapping due to tsunami using Geographic Information System in Buleleng Regency, Bali Province. IOP Conference Series: Earth and Environmental Science, 944(1). doi : 10.1088/1755-1315/944/1/012045

Suppasri, A., Mas, E., Charvet, I., Gunasekera, R., Imai, K., Fukutani, Y., Abe, Y., & Imamura, F. (2013). Building damage characteristics based on surveyed data and fragility curves of the 2011 Great East Japan tsunami. Natural Hazards, 66(2), 319–341. doi : 10.1007/s11069-012-0487-8

Tatsumi, D., Takahashi, S., Fujima, K., Shigihara, Yoshinori Matsutomi, H., Kosa, K., Shoji, G., & Murashima, Y. (2007). Field Survey on 2006 Java Tsunami. Proceedings Of Coastal Engineering, 54, 1416–1420. doi : 10.2208/proce 1989.54.1416

UNISDR. (2009). Terminology on Disaster Risk Reduction. UNISDR (United Nations International Strategy for Disaster Reduction). https://www.undrr.org/terminology/vulnerability

United States Geological Survey (USGS). (2022). Earthquake Catalogue (2000-2022). United States Geological Survey. https://earthquake.usgs.gov/earthquakes/search/

Wibowo, T. W., Mardiatno, D., & Sunarto, S. (2017). Pemetaan Risiko Tsunami terhadap Bangunan secara Kuantitatif. Majalah Geografi Indonesia, 31(2), 68. doi : 10.22146/mgi.28044

Widana, I. D. K. K., Asmaniati, F., Djati, S. P., & Ingkadijaya, R. (2021). A new decade for social changes Analysis of Disaster Safe School Level in West Coast of Pandeglang Regency, Indonesia Sundring Pantja Djati. Technium Social Sciences Journal, 20 (6), 961-969. www.techniumscience.com

Williams, J. H., Wilson, T. M., Horspool, N., Paulik, R., Wotherspoon, L., Lane, E. M., & Hughes, M. W. (2020). Assessing transportation vulnerability to tsunamis: utilising post-event field data from the 2011 Tohoku tsunami, Japan, and the 2015 Illapel tsunami, Chile. Natural Hazards Earth System Sciences, 451–470. Doi: 10.5194/nhess-20-451-2020

Article Metrics

Abstract view(s): 578 time(s)
PDF: 230 time(s) HTML: 58 time(s)

Refbacks

  • There are currently no refbacks.