EFFECT OF QUENCHING MEDIA VARIATIONS ON THE HARDNESS AND MICROSTRUCTURES OF AISI O1 TOOL STEEL

Hariningsih -(1*), Desi Gustiani(2), Sutiyoko -(3)

(1) Polytechnique Manufacturing of Ceper
(2) Sakarya Uygulamalı Bilimler Üniversitesi, Turkiye
(3) Polytechnique Manufacturing of Ceper
(*) Corresponding Author

Abstract

Tool steels AISI O1 are widely used in the manufacturing industry to produce a wide variety of tools, moulds, and other applications requiring high wear resistance. Wear resistance is identic with high hardness, and the combination can be obtained by hardening-tempering and cryogenic treatment. However, cryogenic treatment requires liquid nitrogen, which is relatively expensive. Therefore, this study aims to determine whether to cool to produce high hardness, which is close to the hardness value of 69 HRC due to cryogenic treatment. The hardening process was carried out by heating the steel at a temperature of 880 °C and holding it for 30 minutes, then quenching using air, oil SAE 10, water with 15% salt, and ice water. The microstructure of the test sample was observed with an optical microscope, and the hardness was tested with a Rockwell hardness tester. The test results showed that the microstructure changed from pearlite and ferrite to bainite and martensite after hardening-quenching. The lower the quenching media temperature, the higher the hardness. Ice water quenching resulted in a fully martensitic structure, and the highest hardness was 66.37 HRC. Ice water is a quenching medium that can produce hardness almost close to the hardness of cryogenic treatment.

Keywords

tool steel, hardening, microstructure, hardness.

Full Text:

PDF

References

M. K. Banerjee, “Physical Metallurgy of Tool Steels,” in Reference Module in Materials Science and Materials Engineering, Elsevier, 2018, pp. 1–28. doi: 10.1016/B978-0-12-803581-8.09810-6.

Y. Aziza and Y. F. Pradani, “Pengaruh Kadar Garam Dapur (NaCl) Dalam Media Pendingin Terhadap Tingkat Kekerasan Pada Proses Pengerasan Baja ST-60,” J. Teknol. Terap. G-Tech, vol. 1, no. 1, pp. 18–25, Aug. 2020, doi: 10.33379/gtech.v1i1.263.

M. Syaifullah, M. Subhan, and J. Juanda, “Pengaruh Air Garam Sebagai Media Pendingin Terhadap Nilai Kekerasan Pada Proses Pengerasan Baja ST 60,” J. Heal. Sains, vol. 2, no. 8, pp. 1555–1569, Aug. 2021, doi: 10.46799/jsa.v2i8.292.

B. Sugito, “Studi Peningkatan Kekerasan Dan Perubahan Struktur Mikro Baja (S09Ck) Yang Di Treatment Pada Cairan Garam,” Media Mesin Maj. Tek. Mesin, vol. 22, no. 1, pp. 38–48, 2021, doi: 10.23917/mesin.v22i1.12884.

H. Hariningsih, S. Sumpena, and H. Sukarjo, “The effectivity of used-oil as quenching medium of 42-CrMo4 steel for automotive materials,” Appl. Res. Smart Technol., vol. 1, no. 1, pp. 28–34, Jun. 2020, doi: 10.23917/arstech.v1i1.11.

S. Rhaiem, M. Kharrat, and M. Dammak, “Effects of Conventional Heat Treatments on the Tribological Behavior of 42CrMO4 Steel,” J. Chem. Mater. Res., vol. 5, no. 3, pp. 39–44, 2016, [Online]. Available: www.oricpub.com%5Cnwww.oricpub.com/jcmr

A. Molinari, M. Pellizzari, S. Gialanella, G. Straffelini, and K. H. Stiasny, “Effect of deep cryogenic treatment on the mechanical properties of tool steels,” J. Mater. Process. Technol., vol. 118, no. 1–3, pp. 350–355, 2001, doi: 10.1016/S0924-0136(01)00973-6.

E. Kaya, K. Kılıçay, and M. Ulutan, “Microstructure and Tribological Properties of Tool Steel AISI O2 After Thorough Cryogenic Heat Treatment,” Met. Sci. Heat Treat., vol. 62, no. 5–6, pp. 399–404, 2020, doi: 10.1007/s11041-020-00574-5.

D. S. Hartanto, A. Suprapto, and I. Widyastuti, “Analisa Variasi Waktu Penahanan Karburisasi Dan Perlakuan Cryogenic Terhadap Sifat Mekanis Baja ST37,” TRANSMISI, vol. 16, no. 1, pp. 56–64, Jul. 2020, doi: 10.26905/jtmt.v16i1.4499.

S. S. Gill, J. Singh, R. Singh, and H. Singh, “Metallurgical principles of cryogenically treated tool steels—a review on the current state of science,” Int. J. Adv. Manuf. Technol., vol. 54, no. 1–4, pp. 59–82, Apr. 2011, doi: 10.1007/s00170-010-2935-5.

P. Joviˇcevi´c-Klug, M. Joviˇcevi´c-Klug, and B. Podgornik, “Effectiveness of deep cryogenic treatment on carbide precipitation,” J. Mater. Res. Technol., vol. 9, no. 6, pp. 13014–13026, 2020, doi: 10.1016/j.jmrt.2020.09.063.

P. Jimbert, M. Iturrondobeita, J. Ibarretxe, and R. F. Martinez, “Influence of Cryogenic Treatment on Wear Resistance and Microstructure of AISI A8 Tool Steel,” Metals (Basel)., vol. 8, pp. 1–11, 2018, doi: 10.3390/met8121038.

S. Kheirandish, H. Saghafian, J. Hedjazi, and M. Momeni, “Effect of Heat Treatment on Microstructure of Modified Cast AISI D3 Cold Work Tool Steel,” J. Iron Steel Res. Int., vol. 17, no. 9, pp. 40–45, Sep. 2010, doi: 10.1016/S1006-706X(10)60140-9.

V. Malau, S. Subagyo, and Supriyanto, “Effects of Heat Treatment and Titanium Nitride (TiN) Coating Deposited by Sputtering Technique PVD on Duylos 2510 Tool Steel Substrate,” Appl. Mech. Mater., vol. 493, pp. 666–671, Jan. 2014, doi: 10.4028/www.scientific.net/AMM.493.666.

M. A. S. bin A. Rahim, M. bin Minhat, N. I. S. B. Hussein, and M. S. bin Salleh, “A comprehensive review on cold work of AISI D2 tool steel,” Metall. Res. Technol., vol. 115, no. 1, p. 104, Nov. 2018, doi: 10.1051/metal/2017048.

L. D. A. Camacho, S. García Miranda, and K. J. Moreno, “Tribological performance of uncoated and TiCN-coated D2, M2 and M4 steels under lubricated condition,” J. Iron Steel Res. Int., vol. 24, no. 8, pp. 823–829, Aug. 2017, doi: 10.1016/S1006-706X(17)30122-X.

S. Kumar, S. R. Maity, and L. Patnaik, “Effect of heat treatment and TiN coating on AISI O1 cold work tool steel,” Mater. Today Proc., vol. 26, no. xxxx, pp. 685–688, 2019, doi: 10.1016/j.matpr.2019.12.367.

S. Al-Qawabah, A. Mostafa, A. Al-Rawajfeh, and U. Al-Qawabeha, “Effect of Heat Treatment on the Grain Size, Microhardness and Corrosion Behavior of the Cold-Working Tool Steels Aisi D2 and Aisi O1,” Mater. Tehnol., vol. 54, no. 6, pp. 785–790, 2020, doi: 10.17222/mit.2020.035.

Hariningsih and T. W. B. Riyadi, “Effect of Hardening and Tempering on the Microstructure and Mechanical Properties of the Tapered-Forged Leaf Spring Steel,” Mater. Sci. Forum, vol. 1029, pp. 25–32, May 2021, doi: 10.4028/www.scientific.net/MSF.1029.25.

H. Hariningsih, T. Daryanto, and L. Lutiyatmi, “Effects of heat treatment on microstructure and hardness of D2 tools,” Appl. Res. Smart Technol., vol. 3, no. 1, pp. 31–40, Aug. 2022, doi: 10.23917/arstech.v3i1.761.

ASTM Standard, ASTM E 18-97a Standard Test Methods for Rockwell Hardness and Rockwell Superficial Hardness of Metallic Materials. West Conshohecken: ASTM International, 1998. [Online]. Available: www.astm.org

ASTM Standard, ASTM E 407-99 Standard Practice for Microetching Metals and Alloys. West Conshohecken: ASTM International, 1999. [Online]. Available: www.astm.org.

J. Jiang, L. Xue, and S. Wang, “Discrete laser spot transformation hardening of AISI O1 tool steel using pulsed Nd:YAG laser,” Surf. Coatings Technol., vol. 205, no. 21–22, pp. 5156–5164, 2011, doi: 10.1016/j.surfcoat.2011.05.016.

F. F. Rachman and U. Rumendi, “Analisis Pengaruh Variasi Temperatur Media Quenching Pada Proses Hardening Terhadap Kekerasan Permukaan Dan Tingkat Distorsi Baja AISI 1045,” Pros. Semin. Nas. Teknol. Manufaktur, 2014, [Online]. Available: http://repository.polman-bandung.ac.id/file_publikasi/291717207_Fikry Fauzi Rachman_Analisis Pengaruh Variasi Temperatur Media Quenching Pada Proses Hardening.pdf

J. Zhang, H. Di, Y. Deng, and R. D. K. Misra, “Effect of martensite morphology and volume fraction on strain hardening and fracture behavior of martensite–ferrite dual phase steel,” Mater. Sci. Eng. A, vol. 627, pp. 230–240, Mar. 2015, doi: 10.1016/j.msea.2015.01.006.

H. Hariningsih, T. Daryanto, and L. Lutiyatmi, “Pengaruh Variasi Media Quenching dan Tempering terhadap Struktur Mikro dan Kekerasan Baja AISI 1045,” Creat. Res. Eng., vol. 2, no. 2, p. 52, Aug. 2022, doi: 10.30595/cerie.v2i2.14317.

H. Pouraliakbar, G. Khalaj, L. Gomidželović, M.-J. Khalaj, and M. Nazerfakhari, “Duplex ceramic coating produced by low temperature thermo-reactive deposition and diffusion on the cold work tool steel substrate: Thermodynamics, kinetics and modeling,” Ceram. Int., vol. 41, no. 8, pp. 9350–9360, Sep. 2015, doi: 10.1016/j.ceramint.2015.03.306.

M. Shah and S. Das Bakshi, “Three-body abrasive wear of carbide-free bainite, martensite and bainite-martensite structure of similar hardness,” Wear, vol. 402–403, no. February, pp. 207–215, May 2018, doi: 10.1016/j.wear.2018.02.020.

A. Akhbarizadeh, A. Shafyei, and M. A. Golozar, “Effects of cryogenic treatment on wear behavior of D6 tool steel,” Mater. Des., vol. 30, no. 8, pp. 3259–3264, Sep. 2009, doi: 10.1016/j.matdes.2008.11.016.

A. Çiçek, F. Kara, T. Kıvak, E. Ekici, and İ. Uygur, “Effects of Deep Cryogenic Treatment on the Wear Resistance and Mechanical Properties of AISI H13 Hot-Work Tool Steel,” J. Mater. Eng. Perform., vol. 24, no. 11, pp. 4431–4439, Nov. 2015, doi: 10.1007/s11665-015-1712-x.

D. N. Korade, K. V. Ramana, K. R. Jagtap, and N. B. Dhokey, “Effect of Deep Cryogenic Treatment on Tribological Behaviour of D2 Tool Steel - An Experimental Investigation,” Mater. Today Proc., vol. 4, no. 8, pp. 7665–7673, 2017, doi: 10.1016/j.matpr.2017.07.100.

Article Metrics

Abstract view(s): 492 time(s)
PDF: 156 time(s)

Refbacks

  • There are currently no refbacks.