Molnupiravir - the First Oral Antiviral for COVID-19: A Literature Review

Nur Afni(1*), Suharjono Suharjono(2)

(1) Universitas Airlangga
(2) Universitas Airlangga
(*) Corresponding Author

Abstract

The COVID-19 pandemic is still an unresolved global health concern, although half of the world's population has been vaccinated. The pharmaceutical industries are still struggling to develop effective antivirals against SARS-CoV-2. Molnupiravir is a new oral antiviral with antiviral properties by targeting coronavirus RNA. This literature review aims to describe the mechanism of action, efficacy, and safety of molnupiravir based on published preclinical and clinical studies for COVID-19 treatment. Relevant studies were collected by electronic databases, including Google Scholar, PubMed, and Science Direct. The inclusion criteria were preclinical and clinical trials related to molnupiravir as an antiviral for the COVID-19 treatment published in December 2019 to January 2022. Preclinical trials demonstrated therapeutic and prophylactic properties against SARS-CoV-2 in cell culture and animal models. Molnupiravir is currently under the emergency use authorization from the FDA to treat COVID-19. Its potent and broad antiviral activity is demonstrated through a mechanism of error catastrophe that causes coronavirus RNA mutagenesis. The published clinical trials have shown that molnupiravir is well-absorbed, well-tolerated, and has relatively mild side effects such as headache, nausea, and diarrhea with a minimal incidence at a dose of 800 mg twice daily. Time to viral RNA clearance was significantly decreased in patients administered molnupiravir 800 mg compared to those who administered placebo (14 days vs 15 days, P value=0,013). Molnupiravir is a promising oral antiviral that can reduce the incidence of COVID-19 hospitalization or death. Further clinical trials regarding its efficacy for severe symptoms and other clinical aspects such as drug interactions and contraindications are still needed.

Keywords

Molnupiravir/EIDD-2801, SARs-CoV-2, COVID-19, Oral Antiviral, Clinical Efficacy

Full Text:

PDF

References

Abdelnabi, R., Foo, C.S., Kaptein, S.J.F., Zhang, X., Nguyen, T., Do, D., Langendries, L., Vangeel, L., Breuer, J., Pang, J., Williams, R., Vergote, V., Heylen, E., Leyssen, P., Dallmeier, K., Coelmont, L., Chatterjee, A.K., Mols, R., Augustijns, P., Jonghe, S. De, Jochmans, D., Weynand, B., Neyts, J., 2021. The combined treatment of Molnupiravir and Favipiravir results in a potentiation of antiviral efficacy in a SARS-CoV-2 hamster infection model. EBioMedicine, 72: 103595, pp.1-9.

Bohn, M.K., Hall, A., Sepiashvili, L., Jung, B., Steele, S., Adeli, K., 2020. Pathophysiology of COVID-19: Mechanisms underlying disease severity and progression. Physiology (Bethesda, Md.), 35(5), pp.288–301.

Chams, N., Chams, S., Badran, R., Shams, A., Araji, A., Raad, M., Mukhopadhyay, S., Stroberg, E., Duval, E.J., Barton, L.M., Hajj Hussein, I., 2020. COVID-19: A Multidisciplinary Review. Frontiers in Public Health, 8, 383, pp.1-20.

Cox, R.M., Wolf, J.D., Plemper, R.K., 2021. Therapeutically administered ribonucleoside analogue MK-4482/EIDD-2801 blocks SARS-CoV-2 transmission in ferrets. Nature Microbiololgy, 6(1), pp.11–18.

Fan, H., Lou, F., Fan, J., Li, M., Tong, Y., 2021. The emergence of powerful oral anti-COVID-19 drugs in the post-vaccine era. Lancet Microbe, 3(2), pp.e91.

Fischer, W.A., Med, S.T., Ii, W.A.F., Jr, J.J.E., Holman, W., Cohen, M.S., Fang, L., Szewczyk, L.J., Sheahan, T.P., Baric, R., Mollan, K.R., Wolfe, C.R., Duke, E.R., Masoud, M., Borroto-esoda, K., Wohl, D.A., Coombs, R.W., Loftis, A.J., Alabanza, P., 2021. A Phase 2a clinical trial of Molnupiravir in patients with COVID-19 shows accelerated SARS-CoV-2 RNA clearance and elimination of infectious virus. Science Translational Medicine, 14(628):eabl7430, pp.1–10.

Hashemian, S.M.R., Pourhanifeh, M.H., Hamblin, M.R., Shahrzad, M. karim, Mirzaei, H., 2022. RdRp inhibitors and COVID-19: Is molnupiravir a good option?. Biomedicine & Pharmacotherapy, 146:112517, pp.1-14.

Imran, M., Arora, M.K., Mohammed, S., Asdaq, B., Khan, S.A., Ali, A.M., Al-shammeri, A.M., Alhazmi, B.D., Harshan, A.A., Alam, M.T., Abida, 2021. Discovery, development, and patent trends on molnupiravir : a prospective oral treatment for COVID-19. Molecules, 26(19):5795, pp.1-18.

Jayk Bernal, A., Gomes da Silva, M.M., Musungaie, D.B., Kovalchuk, E., Gonzales, A., Delos Reyes, V., Martín-Quirós, A., Caraco, Y., Williams-Diaz, A., Brown, M.L., Du, J., Pedley, A., Assaid, C., Strizki, J., Grobler, J.A., Shamsuddin, H.H., Tipping, R., Wan, H., Paschke, A., Butterton, J.R., Johnson, M.G., De Anda, C., MOVe-OUT Study Group., 2021. Molnupiravir for oral treatment of COVID-19 in nonhospitalized patients. The New England Journal of Medicine, 386(6), pp.509-520.

Kabinger, F., Stiller, C., Schmitzová, J., Dienemann, C., Kokic, G., Hillen, H.S., Höbartner, C., Cramer, P., 2021. Mechanism of molnupiravir-induced SARS-CoV-2 mutagenesis. Nature Structural & Molecular Biology, 28(9), pp.740–746.

Khoo, S.H., Fitzgerald, R., Fletcher, T., Ewings, S., Jaki, T., Lyon, R., Downs, N., Walker, L., Tansley-Hancock, O., Greenhalf, W., Woods, C., Reynolds, H., Marwood, E., Mozgunov, P., Adams, E., Bullock, K., Holman, W., Bula, M.D., Gibney, J.L., Saunders, G., Corkhill, A., Hale, C., Thorne, K., Chiong, J., Condie, S., Pertinez, H., Painter, W., Wrixon, E., Johnson, L., Yeats, S., Mallard, K., Radford, M., Fines, K., Shaw, V., Owen, A., Lalloo, D.G., Jacobs, M., Griffiths, G., 2021. Optimal dose and safety of molnupiravir in patients with early SARS-CoV-2: a Phase I, open-label, dose-escalating, randomized controlled study. Journal of Antimicrobial Chemotheraphy, 76(12), pp.3286–3295.

Kozlov, M., 2022. Why scientists are racing to develop more COVID antivirals. Nature, 601, pp.496.

Li, C.X., Noreen, S., Zhang, L.X., Saeed, M., Wu, P.F., Ijaz, M., Dai, D.F., Maqbool, I., Madni, A., Akram, F., Naveed, M., Li, J.H., 2022. A critical analysis of SARS-CoV-2 (COVID-19) complexities, emerging variants, and therapeutic interventions and vaccination strategies. Biomedicine & Pharmacotherapy, 146:112550, pp.1-17.

Malone, B., Campbell, E.A., 2021. Molnupiravir: coding for catastrophe. Nature Structural & Molecular Biology, 28(9), pp.706–708.

Martines, R.B., Ritter, J.M., Matkovic, E., Gary, J., Bollweg, B.C., Bullock, et al., 2020. Pathology and pathogenesis of SARS-CoV-2 associated with fatal coronavirus disease, United States. Emerging Infectious Diseases, 26(9), pp.2005-2015.

Merck, 2021. Merck and Ridgeback’s Molnupiravir receives U.S. FDA emergency use authorization for the treatment of high-risk adults with mild to moderate COVID-19. [Online] Available at: https://www.businesswire.com/news/home/20211223005322/en/ [Accessed 13 January 2022].

Ouassou, H., Kharchoufa, L., Bouhrim, M., Daoudi, N.E., Imtara, H., Bencheikh, N., ELbouzidi, A., Bnouham, M., 2020. The pathogenesis of coronavirus disease 2019 (COVID-19): evaluation and prevention. Journal of Immunology Research, 2020: 1357983, pp.1-7.

Painter, G.R., Natchus, M.G., Cohen, O., Holman, W., Painter, W.P., 2021a. Developing a direct acting, orally available antiviral agent in a pandemic: the evolution of molnupiravir as a potential treatment for COVID-19. Current Opinion in Virology, 50, pp.17–22.

Painter, W.P., Holman, W., Bush, J.A., Almazedi, F., Malik, H., Eraut, N.C.J.E., Morin, M.J., Szewczyk, L.J., Painter, R., 2021b. Human safety, tolerability, and pharmacokinetics of molnupiravir, a novel broad-spectrum oral antiviral agent with activity against SARS-CoV-2. Antimicrobial Agents and Chemotherapy, 65(5):e02428-20, pp.1-14.

Parasher, A., 2021. COVID-19 : Current understanding of its pathophysiology, clinical presentation and treatment. Posgraduate Medical Journal, 97(1147), pp.312–320.

Pouramini, A., Kafi, F., Hassanzadeh, S., Saeifar, S., Jahantigh, H.R., 2022. Molnupiravir; an effective drug in treating COVID-19?. Journal of Preventive Epidemiology, 7(1): e11, pp.1-2.

Pourkarim, F., Pourtaghi-Anvarian, S., Rezaee, H., 2022. Molnupiravir : A new candidate for COVID-19 treatment. Pharmacology Research & Perspectives, 10(1): e00909, pp.1-7.

Ray, B., Ali, I., Jana, S., Mukherjee, S., Pal, S., Ray, S., Schütz, M., Marschall, M., 2022. Antiviral strategies using natural source-derived sulfated polysaccharides in the light of the COVID-19 pandemic and major human pathogenic viruses. Viruses, 14(1): 35, pp.1-47.

Renn, M., Bartok, E., Zillinger, T., Hartmann, G., Behrendt, R., 2021. Animal models of SARS-CoV-2 and COVID-19 for the development of prophylactic and therapeutic interventions. Pharmacology & Therapeutics, 228: 107931, pp.1-12.

Rosenke, K., Hansen, F., Schwarz, B., Feldmann, F., Haddock, E., Rosenke, R., Barbian, K., Meade-White, K., Okumura, A., Leventhal, S., Hawman, D.W., Ricotta, E., Bosio, C.M., Martens, C., Saturday, G., Feldmann, H., Jarvis, M.A., 2021. Orally delivered MK-4482 inhibits SARS-CoV-2 replication in the Syrian hamster model. Nature Communications, 12(1): 2295, pp.1-8.

Rothan, H.A., Byrareddy, S.N., 2020. The epidemiology and pathogenesis of coronavirus disease (COVID-19) outbreak. Journal of Autoimmunity, 109: 102433, pp.5411–5413.

Rusu, A., Arbănaşi, E.-M., Lungu, I.-A., Moldovan, O.-L., 2021. Perspectives on antiviral drugs development in the treatment of COVID-19. Acta Biologica Marisiensis, 4(1), pp.44–59.

Salasc, F., Lahlali, T., Laurent, E., Rosa-Calatrava, M., Pizzorno, A., 2022. Treatments for COVID-19: Lessons from 2020 and new therapeutic options. Current Opinion in Pharmacology, 62, pp.43–59.

Sheahan, T.P., Sims, A.C., Zhou, S., Graham, R.L., Pruijssers, A.J., Agostini, M.L., Leist, S.R., Schafer, A., Dinnon, K.H., Stevens, L.J., Chappell, J.D., Lu, X., Hughes, T.M., George, A.S., Hill, C.S., Montgomery, S.A., Brown, A.J., Bluemling, G.R., Natchus, M.G., Saindane, M., Kolykhalov, A.A., Painter, G., Harcourt, J., Tamin, A., Thornburg, N.J., Swanstrom, R., Denison, M.R., Baric, R.S., 2020. An orally bioavailable broad-spectrum antiviral inhibits SARS-CoV-2 in human airway epithelial cell cultures and multiple coronaviruses in mice. Science Translational Medicine, 12(541): eabb5883, pp.1–20.

Şimşek Yavuz, S., Komşuoğlu Çelikyurt, İ., 2021. An update of anti-viral treatment of COVID-19. Turkish Journal of Medical Sciences, 51(7), pp.3372–3390.

Singh, A.K., Singh, A., Singh, R., Misra, A., 2021a. Molnupiravir in COVID-19: A systematic review of literature. Diabetes & Metabolic Syndrome, 15(6): 102329, pp.1-12.

Singh, S.P., Pritam, M., Pandey, B., Yadav, T.P., 2021b. Microstructure, pathophysiology, and potential therapeutics of COVID-19: A comprehensive review. Journal of Medical Virology, 93(1), pp.275–299.

Singla, S., Goyal, S., 2022. Antiviral activity of molnupiravir against COVID-19: a schematic review of evidences. Bulletin of National Research Centre, 46(1):62, pp.1-8.

Toots, M., Yoon, J., Hart, M., Natchus, M.G., Painter, G.R., Plemper, R.K., 2020. Quantitative efficacy paradigms of the influenza clinical drug candidate EIDD-2801 in the ferret model. Translational research : the journal of laboratory and clinical medicine, 218:16–28.

Toots, M., Yoon, J.J., Cox, R.M., Hart, M., Sticher, Z.M., Makhsous, N., Plesker, R., Barrena, A.H., Reddy, P.G., Mitchell, D.G., Shean, R.C., Bluemling, G.R., Kolykhalov, A.A., Greninger, A.L., Natchus, M.G., Painter, G.R., Plemper, R.K., 2019. Characterization of orally efficacious influenza drug with high resistance barrier in ferrets and human airway epithelia. Science Translational Medicine, 11(515): eaax5866, pp.1-27.

Vicenti, I., Zazzi, M., Saladini, F., 2021. SARS-CoV-2 RNA-dependent RNA polymerase as a therapeutic target for COVID-19. Expert Opinion on Therapeutic Patent, 31(4), pp.325–337.

Wahl, A., Gralinski, L.E., Johnson, C.E., Yao, W., Kovarova, M., Dinnon, K.H., Liu, H., Madden, V.J., Krzystek, H.M., De, C., White, K.K., Gully, K., Schäfer, A., Zaman, T., Leist, S.R., Grant, P.O., Bluemling, G.R., Kolykhalov, A.A., Natchus, M.G., Askin, F.B., Painter, G., Browne, E.P., Jones, C.D., Pickles, R.J., Baric, R.S., Garcia, J.V., 2021. SARS-CoV-2 infection is effectively treated and prevented by EIDD-2801. Nature, 591(7850), pp.451–457.

Wiersinga, W.J., Rhodes, A., Cheng, A.C., Peacock, S.J., Prescott, H.C., 2020. Pathophysiology, transmission, diagnosis, and treatment of Coronavirus Disease 2019 (COVID-19): A Review. JAMA, 324(8), pp.782–793.

Yuki, K., Fujiogi, M., Koutsogiannaki, S., 2020. COVID-19 pathophysiology: A review. Clinical Immunology (Orlando, Fla), 215: 108427, pp.1-7.

Zhou, S., Hill, C.S., Sarkar, S., Tse, L. V., Woodburn, B.M.D., Schinazi, R.F., Sheahan, T.P., Baric, R.S., Heise, M.T., Swanstrom, R., 2021. β-d-N4-hydroxycytidine Inhibits SARS-CoV-2 through lethal mutagenesis but is also mutagenic to mammalian cells. The Journal of Infectious Diseases, 224(3), pp.415–419.

Article Metrics

Abstract view(s): 463 time(s)
PDF: 556 time(s)

Refbacks

  • There are currently no refbacks.