Interactive Android Module Development Containing Three Chemical Representation Levels on Material of Salt Hydrolysis

Muhammad Zamhari(1*), Pandu Ridzaniyanto(2), Tawatchai Kangkamano(3)

(1) Faculty of Teacher Training and Education, Universitas Islam Negeri Sunan Kalijaga
(2) Senior High School of Kolombo, Sleman, Yogyakarta
(3) Faculty of Science, Thaksin University
(*) Corresponding Author

Abstract

Three chemical representation is an important aspect of chemistry learning. However, the database study shows that interactive chemistry learning media containing three levels of representation is not available. This research aims to develop and assess the feasibility of an interactive Android-based learning module for senior high school students containing three chemical representation levels on the material of salt hydrolys-is. The study was conducted using research and development (RnD) method.  Stages of research were con-ducted as follows, analysis, development process, product validation and assessment. The Android module was subsequently validated by media and concept experts and then limitedly assessed by five chemistry teachers and ten senior high school students. The instrument used was validated by an instrument expert. The validation results by media and concept experts indicated that the media was valid in terms of media performance and salt hydrolysis material. Based on teachers' and students' assessments, the media received a score of 87.5% and 83.0%, with very good category. It can be concluded that the interactive Android-based learning module containing three chemical representations on the material of salt hydrolysis was successful-ly developed and can be tested extensively in senior high school. The developed media closed a significant gap in the need of interactive chemistry learning media containing three levels of chemical representation, especially in the material of salt hydrolisis

Keywords

android-based learning module; learning media; salt hydrolysis; three chemical representation levels

Full Text:

PDF

References

Addiin, I., Ashadi, A., & Masykuri, M. (2016). Analisis Representasi Kimia pada Materi Pokok Hidrolisis Garam dalam Buku Kimia Kelas XI SMA/MA. Jurnal Kimia dan Pendidikan Kimia, 1(2), 58-65.

Aliyah, A. A., Susilaningsih, E., Kasmui, K., Nurchasanah, N., & Astuti, P. (2018). Desain Media Peta Konsep Multi Representasi pada Materi Buffer dan Hidrolisis. Jurnal Inovasi Pendidikan Kimia, 12(1), 2055-2064.

Atkinson, M. B., Croisant, M., & Bretz, S. L. (2021). Investigating first-year undergraduate chemistry students’ reasoning with reaction coordinate diagrams when choosing among particulate-level reaction mechanisms. Chemistry Education Research and Practice, 22(1), 199-213. doi:10.1039/D0RP00193G

DeKorver, B. K., & Towns, M. H. (2015). General Chemistry Students’ Goals for Chemistry Laboratory Coursework. Journal of Chemical Education, 92(12), 2031-2037. doi:10.1021/acs.jchemed.5b00463

Delpech, R. (2010). Why are school students bored with science? Journal of Biological Education, 36(4), 156-157. doi:10.1080/00219266.2002.9655825

Ditama, V., Saputro, S., Saputro, C., & Nugroho, A. (2015). Pengembangan multimedia interaktif dengan menggunakan program adobe flash untuk pembelajaran kimia materi hidrolisis garam SMA kelas XI. Jurnal Pendidikan Kimia Universitas Sebelas Maret, 4(2), 23-31.

Dutton, W. H., & Loader, B. D. (2005). Digital Academe: New Media in Higher Education and Learning. Routledge.

Eilam, B., & K. Gilbert, J. (2014). The Significance of Visual Representations in the Teaching of Science. In J. K. Gilbert (Ed.), Science Teachers’ Use of Visual Representations (Vol. 8). Switzerland: Springer International Publishing.

El Kababi, K., Atibi, A., Radid, M., & Benmassaoud, A. A. (2017). Difficulties encountered by the Moroccan high school students at the level of the modelling and the course of a chemical reaction. New Trends and Issues Proceedings on Humanities and Social Sciences, 3(1), 95-105. doi:https://doi.org/10.18844/gjhss.v3i1.1755

Fitriansyah, R., Fatinah, L., & Syahril, M. (2020). Critical Review: Professional Development Programs to Face Open Educational Resources in Indonesia. Indonesian Journal on Learning and Advanced Education (IJOLAE), 2(2), 109-119. doi:10.23917/ijolae.v2i2.9662

Helsy, I., Maryamah, Farida, I., & Ramdhani, M. A. (2010). Volta-Based Cells Materials Chemical Multiple Representation to Improve Ability of Student Representation Journal of Physics: Conference Series, 895, 1-5. doi:10.1088/1742-6596/895/1/012010

Irwansyah, F. S., Yusuf, Y. M., Farida, I., & Ramdhani, M. A. (2018). Augmented reality (AR) technology on the android operating system in chemistry learning. IOP conference series: Materials science and engineering, 288(1), 1-7. doi:10.1088/1757-899X/288/1/012068

Isworini, I., Sunarno, W., & Saputro, S. (2015). Pengembangan Modul Pembelajaran Hidrolisis Garam Berbasis Model Inkuiri Terbimbing (Guidedinquiry) untuk Siswa Madrasah Aliyah Kelas XI. Inkuiri, 4(3), 9-20. doi:https://doi.org/10.20961/inkuiri.v4i3.9542

Julia, D., Rosilawati, I., & Efkar, T. (2016). Pengembangan modul berbasis multipel representasi pada materi garam hidrolisis. Jurnal Pendidikan dan Pembelajaran Kimia, 5(3), 65-76.

Kirkwood, A., & Price, L. (2005). Learners and learning in the twenty‐first century: what do we know about students’ attitudes towards and experiences of information and communication technologies that will help us design courses? Studies in Higher Education, 30(3), 257–274. doi:10.1080/03075070500095689

Lewalter, D. (2003). Cognitive strategies for learning from static and dynamic visuals. Learning and Instruction, 13, 177-189. doi::10.1016/S0959-4752(02)00019-1

Luviani, S. D., Mulyani, S., & Widhiyanti, T. (2021). A review of three levels of chemical representation until 2020. In Journal of Physics: Conference Series, 1806(1), 1-7. doi:10.1088/1742-6596/1806/1/012206

Odewumi, M. O., Falade, A. A., Adeniran, A. O., Akintola, D. A., Oputa, G. O., & Ogunlowo, S. A. (2019). Acquiring Basic Chemistry Concepts through Virtual learning in Nigerian Senior Secondary Schools. Indonesian Journal on Learning and Advanced Education (IJOLAE), 2(1), 56-67. doi:10.23917/ijolae.v2i1.7832

Peraturan Menteri Pendidikan dan Kebudayaan tentang Standar Isi Pendidikan Dasar dan Menengah, (2016).

Putra, P. S., Asi, N. B., Anggraeni, M. E., & Karelius. (2020). Development of android-based chemistry learning media for experimenting. Journal of Physics: Conference Series, 1422(1), 1-9. doi:10.1088/1742-6596/1422/1/012037

Retno, A. T. P., Saputro, S., & Utami, B. (2015). Pengembangan media pembelajaran buletin dalam bentuk buku saku berbasis hirarki konsep untuk pembelajaran kimia kelas XI materi hidrolisis garam. Jurnal Pendidikan Kimia, 4(2), 74-81.

Russell, J. W., Kozma, R. B., Jones, T., Wykoff, J., Marx, N., & Davis, J. (1997). Use of Simultaneous-Synchronized Macroscopic, Microscopic, and Symbolic Representations To Enhance the Teaching and Learning of Chemical Concepts. Journal of Chemical Education, 74(3), 330-334. doi:10.1021/ed074p330

Saputri, A., Sukirno, S., Kurniawan, H., & Probowasito, T. (2020). Developing Android Game-Based Learning Media “Go Accounting” in Accounting Learning. Indonesian Journal on Learning and Advanced Education (IJOLAE), 2(2), 91-99. doi:10.23917/ijolae.v3i1.10269

Sari, A. C., Fadillah, A. M., Jonathan, J., & Prabowo, M. R. D. (2019). Interactive Gamification Learning Media Application For Blind Children Using Android Smartphone in Indonesia. Procedia Computer Science, 157, 589-595. doi:10.1016/j.procs.2019.09.018

Sugiyono. (2015). Metode Penelitian Kuantitatif, Kualitatif, dan R&D. Bandung: Penerbit Alfabeta.

Sujak, K. B., & Daniel, E. G. S. (2018). Understanding of Macroscopic, Microscopic and Symbolic Representations Among Form Four Students in Solving Stoichiometric Problems. Malaysian Online Journal of Educational Sciences, 5(3), 83-96.

Susilaningsih, E., Wulandari, C., Supartono, Kasmui, & Alighiri, D. (2018). The use of multi representative learning materials: definitive, macroscopic, microscopic, symbolic, and practice in analyzing students' concept understanding. Journal of Physics: Conference Series, 983(1), 1-6. doi:10.1088/1742-6596/983/1/012165

Troseth, G. L., Russo, C. E., & Strouse, G. A. (2016). What’s next for research on young children’s interactive media? Journal of Children and Media, 10(1), 54-62. doi:10.1080/17482798.2015.1123166

Umami, M. Z., Rubi’ah, R. a., Wardani, S., & Kurniawan, C. (2020). Analysis of Salt Hydrolysis Misconception With False Statements After Application of Guided Inquiry Assisted by E-Laboratory Instruction. Journal of Innovative Science Education, 9(2), 267-274. doi:10.15294/JISE.V8I3.35931

Umami, M. Z., Rubi’ah, R. a., Wardani, S., & Kurniawan, C. (2020). Analysis of Salt Hydrolysis Misconception With False Statements After Application of Guided Inquiry Assisted by E-Laboratory Instruction. Journal of Innovative Science Education, 9(3), 267–274. doi:10.15294/JISE.V8I3.35931

Upahi, J. E., & Ramnarain, U. (2019). Representations of chemical phenomena in secondary school chemistry textbooks. Chemistry Education Research and Practice, 20(1), 146-159. doi:10.1039/C8RP00191J

Wirawan, S., Agushinta R., D., Muhammad, F. F., Saifudin, L. D., & Ibrahim, M. (2013). Analysis of Child Computer Interaction in Edutainment and Simulation Games Application on Android Platform in Indonesia. International Journal of Advanced Computer Science and Applications, 4(7), 174-178. doi:10.14569/IJACSA.2013.040724

Article Metrics

Abstract view(s): 556 time(s)
PDF: 456 time(s)

Refbacks

  • There are currently no refbacks.