Improving Teaching Quality and Problem Solving Ability Through Contextual Teaching and Learning in Differential Equations: A Lesson Study Approach

Rita Pramujiyanti Khotimah(1*), Masduki Masduki(2)

(1) Department of Mathematics Education, Universitas Muhammadiyah Surakarta
(2) Department of Mathematics Education, Universitas muhammadiyah Surakarta
(*) Corresponding Author


Differential equations is a branch of mathematics which is closely related to mathematical modeling that arises in real-world problems. Problem solving ability is an essential component to solve contextual problem of differential equations properly. The purposes of this study are to describe contextual teaching and learning (CTL) model in differential equations course, to improve lecturers’ abilities in implementing CTL, and to improve students’ problem solving ability in differential equations. The study was conducted in the fifth semester of 2015/2016 academic year with 34 students of mathematics education Universitas Muhammadiyah Surakarta as participants. The CTL model was applied by lesson study approach which involved three stages namely plan, do, and see in each cycle. This research was conducted in four cycles. The study results found that discovery-based CTL could be applied in differential equations course. The lecturer abilities to design discovery-based contextual learning plan, to present real-world problem in learning process, to design learning strategy and assessment instruments of problem solving improved significantly. Problem solving ability of students also improved during teaching and learning process.


contextual learning, differential equations, lesson study, problem solving ability

Full Text:



Czocher, Jennifer. (2011). Examining the Relationship between Contextual Mathematics Instruction and Performance of Engineering Students. Proceeding International Conference on Engineering Education: 21-26 August 2011: Belfast, Northern Ireland, UK

Czocher, Jennifer & Baker, Greg. (2010). Contextual Learning in Math Education for Engineers. Proceeding International Conference on Engineering Education ICEE-2010 July 19-22, Gliwice, Poland

Foshay, Rob & Kirkley, Jamie. (2003), Principle for Teaching Problem Solving, Technical Paper, Plato Learning Inc.

Gravemeijer, Koeno & Doorman, Michiel. (1999). Context Problems in Mathematics Education: A Calculus Course As an Example. Educational Studies in Mathematics, 39: 111 – 129.

Hamruni. (2012). Strategi Pembelajaran. Insan Madani: Yogyakarta.

Johnson, Elaine B. (2002). Contextual Teaching and Learning: Menjadikan Kegiatan Belajar Mengajar Mengasyikkan dan Bermakna. Second Edition. Translated by Ibnu Setiawan. Mizan Learning Center (LMC): Bandung.

Kadir, J I., Parman, Mayjen S. (2013). Mathematical Communication Skills of Junior Secondary School in Coastal Area. Jurnal Teknologi, 63(2), 77-83.

Khotimah, R. P & Masduki. (2015). Problem Solving Ability of Students to Solve Ordinary Differential Equations. Paper presented at International Conference on Mathematics, Statistics, Computer Science and Mathematics Education, 2-3 October 2015 , Universitas Hasanudin, Makassar, Sulawesi Selatan.

Kurniati, Kusumah, Y S., Subandar, J., Herman, T. (2015). Mathematical Critical Thinking Ability Through Contextual Teaching and Learning Approach. IndoMS Journal of Education, 6(1), 53 – 62.

Kwon, O.N. (2002). Conceptualizing the Realistic Mathematics Education Approach in the Teaching and Learning of Ordinary Differential Equations. Presented at International Conference on the Teaching of Mathematics (at the Undergraduate Level) 2002.

Lewis, C. C. (2002). Lesson Study: A Handbook of Teacher-Led Instructional Change. Philadelphia, PA: Research for Better School, Inc.

Lewis, C. C., Perry, R. R., Hurd, J. (2009). Improving Mathematics Instruction Truogh Lesson Study: A Theoretical Model and North American Case. Journal of Mathematics Teacher Education, 12: 285-304.

Masduki & Khotimah, R. P. (2015). An Error Analysis of Students’ to Solve The First Order Differential Equations. Paper presented at International Conference on Mathematics, Statistics, Computer Science and Mathematics Education, 2-3 October 2015, Universitas Hasanudin, Makassar, Sulawesi Selatan.

Mathematical Association of America. (1998). Quantitative literacy goals. In Quantitative reasoning for college graduates: A complement to the standards, Part II [On-line]. Tersedia di: Accessed on 4 February 2015.

Ministry of Education. (2007). Mathematics Syllabus Primary. Curriculum Planning and Development Division: Ministry of Education Singapore.

Miles, B. M., Huberman, A. M. (1994), Qualitative Data Analysis. Second Edition. SAGE Publication: California, US.

Mulyana, Slamet. (2007). Lesson Study. Makalah. Kuningan: LPMP-Jawa Barat.

Muslich, Masnur. (2007). KTSP: Pembelajaran Berbasis Kompetensi dan Kontekstual. Bumi Aksara: Jakarta.

National Council of Teachers of Mathematics (NCTM). (2000). Principles and Standards for School Mathematics. The Council, Reston, VA.

Polya, G. (1973). How to Solve It: A New Aspect of Mathematics Method. Princeton Univesity Press, Princeton.

Rasmussen, Chris L., King, Karen D. (2000). Locating Starting Points in Differential Equations: A Realistic Mathematics Approach. Int. J. Math. Sci. Technol., 31(2), 161-172

Seifi, Mohammad., Haghverdi, Majid., Azizmohamadi, Fatemeh. (2012). Recognition of Student’s Difficulties in Solving Mathematical World Problems from the Viewpoints of Teachers. Journal of Basic and Applied Scientific Research, 2(3), 2923 – 2928.

Selahattin, Arslan. (2010). Traditional instruction of differential equations and conceptual learning. Teaching Mathematics and Its Applications, 29:94 -107

Slavit, David., Cooper, Kevin & LoFaro, Tom. (2002). Understandings the Solutions to Differential Equations Through Context, Web Based Simulations and Discussion. School Science and Mathematics, 102(8), 380 – 390.

Subadi, T., Khotimah, R P., Sutarni, S. (2013). A Lesson Study as a Development Model of Professional Teachers. International Journal of Education, 5(2), 102-114.

Suryawati, E., Kamisah, O., dan Meerah, T S M. (2010). The Effectiveness of RANGKA Contextual Teaching and Learning on Student’s Problem Solving Skills and Scientific Atittude. Procedia Social and Behavioral Sciences, 9, 1717 – 1721.

Sutama, Haryoto, dan Narimo, Sabar. (2013). Contextual Math Learning Based on Lesson Study can Increase Study Communication. International Journal of Education, 5(4), pp. 48-60.

Widiati, Indah. (2014). Developing Mathematical Problem Solving Skills of Students Junior High School Through Contextual Learning. Proceeding International Seminar on Innovation in Mathematics and Mathematics Education (1st ISIM-MED), UNY, November, 26 – 30, 2014. EP- 273 – 278

Article Metrics

Abstract view(s): 2367 time(s)
PDF: 1548 time(s)


  • There are currently no refbacks.